Lianwen Jin


2024

pdf bib
VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models
Jiapeng Wang | Chengyu Wang | Kunzhe Huang | Jun Huang | Lianwen Jin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.

pdf bib
DiffChat: Learning to Chat with Text-to-Image Synthesis Models for Interactive Image Creation
Jiapeng Wang | Chengyu Wang | Tingfeng Cao | Jun Huang | Lianwen Jin
Findings of the Association for Computational Linguistics: ACL 2024

We present DiffChat, a novel method to align Large Language Models (LLMs) to “chat” with prompt-as-input Text-to-Image Synthesis (TIS)models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat.Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.

pdf bib
PPTSER: A Plug-and-Play Tag-guided Method for Few-shot Semantic Entity Recognition on Visually-rich Documents
Wenhui Liao | Jiapeng Wang | Zening Lin | Longfei Xiong | Lianwen Jin
Findings of the Association for Computational Linguistics: ACL 2024

Visually-rich document information extraction (VIE) is a vital aspect of document understanding, wherein Semantic Entity Recognition (SER) plays a significant role. However, few-shot SER on visually-rich documents remains relatively unexplored despite its considerable potential for practical applications. To address this issue, we propose a simple yet effective Plug-and-Play Tag-guided method for few-shot Semantic Entity Recognition (PPTSER) on visually-rich documents. PPTSER is built upon off-the-shelf multi-modal pre-trained models. It leverages the semantics of the tags to guide the SER task, reformulating SER into entity typing and span detection, handling both tasks simultaneously via cross-attention. Experimental results illustrate that PPTSER outperforms existing fine-tuning and few-shot methods, especially in low-data regimes. With full training data, PPTSER achieves comparable or superior performance to fine-tuning baseline. For instance, on the FUNSD benchmark, our method improves the performance of LayoutLMv3-base in 1-shot, 3-shot and 5-shot scenarios by 15.61%, 2.13%, and 2.01%, respectively. Overall, PPTSER demonstrates promising generalizability, effectiveness, and plug-and-play nature for few-shot SER on visually-rich documents. The codes will be available at [https://github.com/whlscut/PPTSER](https://github.com/whlscut/PPTSER).

pdf bib
TongGu: Mastering Classical Chinese Understanding with Knowledge-Grounded Large Language Models
Jiahuan Cao | Dezhi Peng | Peirong Zhang | Yongxin Shi | Yang Liu | Kai Ding | Lianwen Jin
Findings of the Association for Computational Linguistics: EMNLP 2024

Classical Chinese is a gateway to the rich heritage and wisdom of ancient China, yet its complexities pose formidable comprehension barriers for most modern people without specialized knowledge. While Large Language Models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), they struggle with Classical Chinese Understanding (CCU), especially in data-demanding and knowledge-intensive tasks. In response to this dilemma, we propose TongGu (mean understanding ancient and modern), the first CCU-specific LLM, underpinned by three core contributions. First, we construct a two-stage instruction-tuning dataset ACCN-INS derived from rich classical Chinese corpora, aiming to unlock the full CCU potential of LLMs. Second, we propose Redundancy-Aware Tuning (RAT) to prevent catastrophic forgetting, enabling TongGu to acquire new capabilities while preserving its foundational knowledge. Third, we present a CCU Retrieval-Augmented Generation (CCU-RAG) technique to reduce hallucinations based on knowledge-grounding. Extensive experiments across 24 diverse CCU tasks validate TongGu’s superior ability, underscoring the effectiveness of RAT and CCU-RAG. The model and dataset are available at https://github.com/SCUT-DLVCLab/TongGu-LLM.

pdf bib
Deciphering Oracle Bone Language with Diffusion Models
Haisu Guan | Huanxin Yang | Xinyu Wang | Shengwei Han | Yongge Liu | Lianwen Jin | Xiang Bai | Yuliang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Originating from China’s Shang Dynasty approximately 3,000 years ago, the Oracle Bone Script (OBS) is a cornerstone in the annals of linguistic history, predating many established writing systems. Despite the discovery of thousands of inscriptions, a vast expanse of OBS remains undeciphered, casting a veil of mystery over this ancient language. The emergence of modern AI technologies presents a novel frontier for OBS decipherment, challenging traditional NLP methods that rely heavily on large textual corpora, a luxury not afforded by historical languages. This paper introduces a novel approach by adopting image generation techniques, specifically through the development of Oracle Bone Script Decipher (OBSD). Utilizing a conditional diffusion-based strategy, OBSD generates vital clues for decipherment, charting a new course for AI-assisted analysis of ancient languages. To validate its efficacy, extensive experiments were conducted on an oracle bone script dataset, with quantitative results demonstrating the effectiveness of OBSD.

2023

pdf bib
CocaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
Jiapeng Wang | Chengyu Wang | Xiaodan Wang | Jun Huang | Lianwen Jin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large-scale pre-trained text-image models with dual-encoder architectures (such as CLIP) are typically adopted for various vision-language applications, including text-image retrieval. However, these models are still less practical on edge devices or for real-time situations, due to the substantial indexing and inference time and the large consumption of computational resources. Although knowledge distillation techniques have been widely utilized for uni-modal model compression, how to expand them to the situation when the numbers of modalities and teachers/students are doubled has been rarely studied. In this paper, we conduct comprehensive experiments on this topic and propose the fully-Connected knowledge interaction graph (Coca) technique for cross-modal pre-training distillation. Based on our findings, the resulting CocaCLIP achieves SOTA performances on the widely-used Flickr30K and MSCOCO benchmarks under the lightweight setting. An industry application of our method on an e-commercial platform further demonstrates the significant effectiveness of CocaCLIP.

pdf bib
Rapid Diffusion: Building Domain-Specific Text-to-Image Synthesizers with Fast Inference Speed
Bingyan Liu | Weifeng Lin | Zhongjie Duan | Chengyu Wang | Wu Ziheng | Zhang Zipeng | Kui Jia | Lianwen Jin | Cen Chen | Jun Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Text-to-Image Synthesis (TIS) aims to generate images based on textual inputs. Recently, several large pre-trained diffusion models have been released to create high-quality images with pre-trained text encoders and diffusion-based image synthesizers. However, popular diffusion-based models from the open-source community cannot support industrial domain-specific applications due to the lack of entity knowledge and low inference speed. In this paper, we propose Rapid Diffusion, a novel framework for training and deploying super-resolution, text-to-image latent diffusion models with rich entity knowledge injected and optimized networks. Furthermore, we employ BladeDISC, an end-to-end Artificial Intelligence (AI) compiler, and FlashAttention techniques to optimize computational graphs of the generated models for online deployment. Experiments verify the effectiveness of our approach in terms of image quality and inference speed. In addition, we present industrial use cases and integrate Rapid Diffusion to an AI platform to show its practical values.

pdf bib
Translating Ancient Chinese to Modern Chinese at Scale: A Large Language Model-based Approach
Jiahuan Cao | Dezhi Peng | Yongxin Shi | Zongyuan Jiang | Lianwen Jin
Proceedings of ALT2023: Ancient Language Translation Workshop

Recently, the emergence of large language models (LLMs) has provided powerful foundation models for a wide range of natural language processing (NLP) tasks. However, the vast majority of the pre-training corpus for most existing LLMs is in English, resulting in their Chinese proficiency falling far behind that of English. Furthermore, ancient Chinese has a much larger vocabulary and less available corpus than modern Chinese, which significantly challenges the generalization capacity of existing LLMs. In this paper, we investigate the Ancient-Chinese-to-Modern-Chinese (A2M) translation using LLMs including LLaMA and Ziya. Specifically, to improve the understanding of Chinese texts, we explore the vocabulary expansion and incremental pre-training methods based on existing pre-trained LLMs. Subsequently, a large-scale A2M translation dataset with 4M pairs is utilized to finetune the LLMs.Experimental results demonstrate the effectiveness of the proposed method, especially with Ziya-13B, in translating ancient Chinese to modern Chinese. Moreover,we deeply analyze the performance of various LLMs with different strategies, which we believe can benefit further research on LLM-based A2M approaches.

2022

pdf bib
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
Jiapeng Wang | Lianwen Jin | Kai Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.