Lianwen Jin


2023

pdf bib
CocaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
Jiapeng Wang | Chengyu Wang | Xiaodan Wang | Jun Huang | Lianwen Jin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large-scale pre-trained text-image models with dual-encoder architectures (such as CLIP) are typically adopted for various vision-language applications, including text-image retrieval. However, these models are still less practical on edge devices or for real-time situations, due to the substantial indexing and inference time and the large consumption of computational resources. Although knowledge distillation techniques have been widely utilized for uni-modal model compression, how to expand them to the situation when the numbers of modalities and teachers/students are doubled has been rarely studied. In this paper, we conduct comprehensive experiments on this topic and propose the fully-Connected knowledge interaction graph (Coca) technique for cross-modal pre-training distillation. Based on our findings, the resulting CocaCLIP achieves SOTA performances on the widely-used Flickr30K and MSCOCO benchmarks under the lightweight setting. An industry application of our method on an e-commercial platform further demonstrates the significant effectiveness of CocaCLIP.

pdf bib
Rapid Diffusion: Building Domain-Specific Text-to-Image Synthesizers with Fast Inference Speed
Bingyan Liu | Weifeng Lin | Zhongjie Duan | Chengyu Wang | Wu Ziheng | Zhang Zipeng | Kui Jia | Lianwen Jin | Cen Chen | Jun Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Text-to-Image Synthesis (TIS) aims to generate images based on textual inputs. Recently, several large pre-trained diffusion models have been released to create high-quality images with pre-trained text encoders and diffusion-based image synthesizers. However, popular diffusion-based models from the open-source community cannot support industrial domain-specific applications due to the lack of entity knowledge and low inference speed. In this paper, we propose Rapid Diffusion, a novel framework for training and deploying super-resolution, text-to-image latent diffusion models with rich entity knowledge injected and optimized networks. Furthermore, we employ BladeDISC, an end-to-end Artificial Intelligence (AI) compiler, and FlashAttention techniques to optimize computational graphs of the generated models for online deployment. Experiments verify the effectiveness of our approach in terms of image quality and inference speed. In addition, we present industrial use cases and integrate Rapid Diffusion to an AI platform to show its practical values.

pdf bib
Translating Ancient Chinese to Modern Chinese at Scale: A Large Language Model-based Approach
Jiahuan Cao | Dezhi Peng | Yongxin Shi | Zongyuan Jiang | Lianwen Jin
Proceedings of ALT2023: Ancient Language Translation Workshop

Recently, the emergence of large language models (LLMs) has provided powerful foundation models for a wide range of natural language processing (NLP) tasks. However, the vast majority of the pre-training corpus for most existing LLMs is in English, resulting in their Chinese proficiency falling far behind that of English. Furthermore, ancient Chinese has a much larger vocabulary and less available corpus than modern Chinese, which significantly challenges the generalization capacity of existing LLMs. In this paper, we investigate the Ancient-Chinese-to-Modern-Chinese (A2M) translation using LLMs including LLaMA and Ziya. Specifically, to improve the understanding of Chinese texts, we explore the vocabulary expansion and incremental pre-training methods based on existing pre-trained LLMs. Subsequently, a large-scale A2M translation dataset with 4M pairs is utilized to finetune the LLMs.Experimental results demonstrate the effectiveness of the proposed method, especially with Ziya-13B, in translating ancient Chinese to modern Chinese. Moreover,we deeply analyze the performance of various LLMs with different strategies, which we believe can benefit further research on LLM-based A2M approaches.

2022

pdf bib
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
Jiapeng Wang | Lianwen Jin | Kai Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.