We propose attribute-aware multimodal entity linking, where the input consists of a mention described with a text paragraph and images, and the goal is to predict the corresponding target entity from a multimodal knowledge base (KB) where each entity is also accompanied by a text description, visual images, and a collection of attributes that present the meta-information of the entity in a structured format. To facilitate this research endeavor, we construct Ameli, encompassing a new multimodal entity linking benchmark dataset that contains 16,735 mentions described in text and associated with 30,472 images, and a multimodal knowledge base that covers 34,690 entities along with 177,873 entity images and 798,216 attributes. To establish baseline performance on Ameli, we experiment with several state-of-the-art architectures for multimodal entity linking and further propose a new approach that incorporates attributes of entities into disambiguation. Experimental results and extensive qualitative analysis demonstrate that extracting and understanding the attributes of mentions from their text descriptions and visual images play a vital role in multimodal entity linking. To the best of our knowledge, we are the first to integrate attributes in the multimodal entity linking task. The programs, model checkpoints, and the dataset are publicly available at https://github.com/VT-NLP/Ameli.
Multimodal tasks in the fashion domain have significant potential for e-commerce, but involve challenging vision-and-language learning problems—e.g., retrieving a fashion item given a reference image plus text feedback from a user. Prior works on multimodal fashion tasks have either been limited by the data in individual benchmarks, or have leveraged generic vision-and-language pre-training but have not taken advantage of the characteristics of fashion data. Additionally, these works have mainly been restricted to multimodal understanding tasks. To address these gaps, we make two key contributions. First, we propose a novel fashion-specific pre-training framework based on weakly-supervised triplets constructed from fashion image-text pairs. We show the triplet-based tasks are an effective addition to standard multimodal pre-training tasks. Second, we propose a flexible decoder-based model architecture capable of both fashion retrieval and captioning tasks. Together, our model design and pre-training approach are competitive on a diverse set of fashion tasks, including cross-modal retrieval, image retrieval with text feedback, image captioning, relative image captioning, and multimodal categorization.
We present the task of Spatio-Temporal Video Question Answering, which requires intelligent systems to simultaneously retrieve relevant moments and detect referenced visual concepts (people and objects) to answer natural language questions about videos. We first augment the TVQA dataset with 310.8K bounding boxes, linking depicted objects to visual concepts in questions and answers. We name this augmented version as TVQA+. We then propose Spatio-Temporal Answerer with Grounded Evidence (STAGE), a unified framework that grounds evidence in both spatial and temporal domains to answer questions about videos. Comprehensive experiments and analyses demonstrate the effectiveness of our framework and how the rich annotations in our TVQA+ dataset can contribute to the question answering task. Moreover, by performing this joint task, our model is able to produce insightful and interpretable spatio-temporal attention visualizations.
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
Given a video with aligned dialogue, people can often infer what is more likely to happen next. Making such predictions requires not only a deep understanding of the rich dynamics underlying the video and dialogue, but also a significant amount of commonsense knowledge. In this work, we explore whether AI models are able to learn to make such multimodal commonsense next-event predictions. To support research in this direction, we collect a new dataset, named Video-and-Language Event Prediction (VLEP), with 28,726 future event prediction examples (along with their rationales) from 10,234 diverse TV Show and YouTube Lifestyle Vlog video clips. In order to promote the collection of non-trivial challenging examples, we employ an adversarial human-and-model-in-the-loop data collection procedure. We also present a strong baseline incorporating information from video, dialogue, and commonsense knowledge. Experiments show that each type of information is useful for this challenging task, and that compared to the high human performance on VLEP, our model provides a good starting point but leaves large room for future work.
A grand goal in AI is to build a robot that can accurately navigate based on natural language instructions, which requires the agent to perceive the scene, understand and ground language, and act in the real-world environment. One key challenge here is to learn to navigate in new environments that are unseen during training. Most of the existing approaches perform dramatically worse in unseen environments as compared to seen ones. In this paper, we present a generalizable navigational agent. Our agent is trained in two stages. The first stage is training via mixed imitation and reinforcement learning, combining the benefits from both off-policy and on-policy optimization. The second stage is fine-tuning via newly-introduced ‘unseen’ triplets (environment, path, instruction). To generate these unseen triplets, we propose a simple but effective ‘environmental dropout’ method to mimic unseen environments, which overcomes the problem of limited seen environment variability. Next, we apply semi-supervised learning (via back-translation) on these dropout environments to generate new paths and instructions. Empirically, we show that our agent is substantially better at generalizability when fine-tuned with these triplets, outperforming the state-of-art approaches by a large margin on the private unseen test set of the Room-to-Room task, and achieving the top rank on the leaderboard.
Recent years have witnessed an increasing interest in image-based question-answering (QA) tasks. However, due to data limitations, there has been much less work on video-based QA. In this paper, we present TVQA, a large-scale video QA dataset based on 6 popular TV shows. TVQA consists of 152,545 QA pairs from 21,793 clips, spanning over 460 hours of video. Questions are designed to be compositional in nature, requiring systems to jointly localize relevant moments within a clip, comprehend subtitle-based dialogue, and recognize relevant visual concepts. We provide analyses of this new dataset as well as several baselines and a multi-stream end-to-end trainable neural network framework for the TVQA task. The dataset is publicly available at http://tvqa.cs.unc.edu.
We address the problem of end-to-end visual storytelling. Given a photo album, our model first selects the most representative (summary) photos, and then composes a natural language story for the album. For this task, we make use of the Visual Storytelling dataset and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album photos, select representative (summary) photos, and compose the story. Automatic and human evaluations show our model achieves better performance on selection, generation, and retrieval than baselines.