Lidia Chao


2024

pdf bib
What is the Best Way for ChatGPT to Translate Poetry?
Shanshan Wang | Derek Wong | Jingming Yao | Lidia Chao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Machine translation (MT) has historically faced significant challenges when applied to literary works, particularly in the domain of poetry translation. The advent of Large Language Models such as ChatGPT holds potential for innovation in this field. This study examines ChatGPT’s capabilities in English-Chinese poetry translation tasks, utilizing targeted prompts and small sample scenarios to ascertain optimal performance. Despite promising outcomes, our analysis reveals persistent issues in the translations generated by ChatGPT that warrant attention. To address these shortcomings, we propose an Explanation-Assisted Poetry Machine Translation (EAPMT) method, which leverages monolingual poetry explanation as a guiding information for the translation process. Furthermore, we refine existing evaluation criteria to better suit the nuances of modern poetry translation. We engaged a panel of professional poets for assessments, complemented evaluations by using GPT-4. The results from both human and machine evaluations demonstrate that our EAPMT method outperforms traditional translation methods of ChatGPT and the existing online systems. This paper validates the efficacy of our method and contributes a novel perspective to machine-assisted literary translation.

pdf bib
Prefix Text as a Yarn: Eliciting Non-English Alignment in Foundation Language Model
Runzhe Zhan | Xinyi Yang | Derek Wong | Lidia Chao | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2024

While supervised fine-tuning (SFT) has been a straightforward approach for tailoring the output of foundation large language model (LLM) to specific preferences, concerns have been raised about the depth of this alignment, with some critiques suggesting it is merely “superficial”. We critically examine this hypothesis within the scope of cross-lingual generation tasks, proposing that the effectiveness of SFT may be constrained by its reliance on prior tokens to guide cross-lingual generation. Based on this crucial insight, and in response to the challenges posed by the costly and limited availability of non-English data for SFT, we introduce a novel training-free alignment method named PreTTY, which employs minimal task-related prior tokens to bridge the foundation LLM and the SFT LLM, achieving comparable performance without training. Experiments on machine translation and part-of-speech tagging across seven languages demonstrate the efficacy of PreTTY in cross-lingual settings. Remarkably, by initiating the decoding process with only one or two prior tokens, foundation LLMs can attain up to 98% of the performance metrics of their SFT counterparts. This method presents a cost-effective alternative to traditional SFT and advances the democratization of multilingual LLMs.

pdf bib
FOCUS: Forging Originality through Contrastive Use in Self-Plagiarism for Language Models
Kaixin Lan | Tao Fang | Derek Wong | Yabo Xu | Lidia Chao | Cecilia Zhao
Findings of the Association for Computational Linguistics: ACL 2024

Pre-trained Language Models (PLMs) have shown impressive results in various Natural Language Generation (NLG) tasks, such as powering chatbots and generating stories. However, an ethical concern arises due to their potential to produce verbatim copies of paragraphs from their training data. This is problematic as PLMs are trained on corpora constructed by human authors. As such, there is a pressing need for research to promote the generation of original content by these models. In this study, we introduce a unique “self-plagiarism” contrastive decoding strategy, aimed at boosting the originality of text produced by PLMs. Our method entails modifying prompts in LLMs to develop an amateur model and a professional model. Specifically, the amateur model is urged to plagiarize using three plagiarism templates we have designed, while the professional model maintains its standard language model status. This strategy employs prompts to stimulate the model’s capacity to identify non-original candidate token combinations and subsequently impose penalties. The application of this strategy is integrated prior to the model’s final layer, ensuring smooth integration with most existing PLMs (T5, GPT, LLaMA) without necessitating further adjustments. Implementing our strategy, we noted a significant decline in non-original sequences comprised of more than three words in the academic AASC dataset and the story-based ROCStories dataset. Source code and scripts will be released after the paper’s acceptance and publication.

2023

pdf bib
Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization
Chi Cheang | Hou Chan | Derek Wong | Xuebo Liu | Zhaocong Li | Yanming Sun | Shudong Liu | Lidia Chao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent pre-trained language models (PLMs) achieve promising results in existing abstractive summarization datasets. However, existing summarization benchmarks overlap in time with the standard pre-training corpora and finetuning datasets. Hence, the strong performance of PLMs may rely on the parametric knowledge that is memorized during pre-training and fine-tuning. Moreover, the knowledge memorized by PLMs may quickly become outdated, which affects the generalization performance of PLMs on future data. In this work, we propose TempoSum, a novel benchmark that contains data samples from 2010 to 2022, to understand the temporal generalization ability of abstractive summarization models. Through extensive human evaluation, we show that parametric knowledge stored in summarization models significantly affects the faithfulness of the generated summaries on future data. Moreover, existing faithfulness enhancement methods cannot reliably improve the faithfulness of summarization models on future data. Finally, we discuss several recommendations to the research community on how to evaluate and improve the temporal generalization capability of text summarization models.

2022

pdf bib
UniTE: Unified Translation Evaluation
Yu Wan | Dayiheng Liu | Baosong Yang | Haibo Zhang | Boxing Chen | Derek Wong | Lidia Chao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Translation quality evaluation plays a crucial role in machine translation. According to the input format, it is mainly separated into three tasks, i.e., reference-only, source-only and source-reference-combined. Recent methods, despite their promising results, are specifically designed and optimized on one of them. This limits the convenience of these methods, and overlooks the commonalities among tasks. In this paper, we propose , which is the first unified framework engaged with abilities to handle all three evaluation tasks. Concretely, we propose monotonic regional attention to control the interaction among input segments, and unified pretraining to better adapt multi-task training. We testify our framework on WMT 2019 Metrics and WMT 2020 Quality Estimation benchmarks. Extensive analyses show that our single model can universally surpass various state-of-the-art or winner methods across tasks.Both source code and associated models are available at https://github.com/NLP2CT/UniTE.

pdf bib
Attention Mechanism with Energy-Friendly Operations
Yu Wan | Baosong Yang | Dayiheng Liu | Rong Xiao | Derek Wong | Haibo Zhang | Boxing Chen | Lidia Chao
Findings of the Association for Computational Linguistics: ACL 2022

Attention mechanism has become the dominant module in natural language processing models. It is computationally intensive and depends on massive power-hungry multiplications. In this paper, we rethink variants of attention mechanism from the energy consumption aspects. After reaching the conclusion that the energy costs of several energy-friendly operations are far less than their multiplication counterparts, we build a novel attention model by replacing multiplications with either selective operations or additions. Empirical results on three machine translation tasks demonstrate that the proposed model, against the vanilla one, achieves competitable accuracy while saving 99% and 66% energy during alignment calculation and the whole attention procedure. Our code will be released upon the acceptance.