One critical issue for chat systems is to stay consistent about preferences, opinions, beliefs and facts of itself, which has been shown a difficult problem. In this work, we study methods to assess and bolster utterance consistency of chat systems. A dataset is first developed for studying the inconsistencies, where inconsistent dialogue responses, explanations of the inconsistencies, and recovery utterances are authored by annotators. This covers the life span of inconsistencies, namely introduction, understanding, and resolution. Building on this, we introduce a set of tasks centered on dialogue consistency, specifically focused on its detection and resolution. Our experimental findings indicate that our dataset significantly helps the progress in identifying and resolving conversational inconsistencies, and current popular large language models like ChatGPT which are good at resolving inconsistencies however still struggle with detection.
This work studies mitigating fact-conflicting hallucinations for large language model (LLM) at inference time.Particularly, we propose a self-endorsement framework that leverages the fine-grained fact-level comparisons across multiple sampled responses.Compared with prior ensemble methods (e.g., self-consistency) that perform response-level selection, our approach can better alleviate hallucinations for knowledge-intensive tasks.Our approach can broadly benefit smaller and open-source LLMs as it mainly conducts simple content-based comparisons.Experiments on Biographies show that our method can effectively improve the factuality of generations with simple and intuitive prompts across different scales of LLMs.Besides, comprehensive analyses on TriviaQA and GSM8K demonstrate the potential of self-endorsement for broader application.
Despite showing impressive abilities, large language models (LLMs) often struggle with factual inaccuracies, i.e., ”hallucinations”, even when they hold relevant knowledge. To mitigate these hallucinations, current approaches typically necessitate high-quality human factuality annotations. In this work, we explore Self-Alignment for Factuality, where we leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality. Specifically, we incorporate Self-Eval, a self-evaluation component, to prompt an LLM to validate the factuality of its own generated responses solely based on its internal knowledge. Additionally, we design Self-Knowledge Tuning (SK-Tuning) to augment the LLM’s self-evaluation ability by improving the model’s confidence estimation and calibration. We then utilize these self-annotated responses to fine-tune the model via Direct Preference Optimization algorithm. We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks on TruthfulQA and BioGEN.
Knowledge-based, open-domain dialogue generation aims to build chit-chat systems that talk to humans using mined support knowledge. Many types and sources of knowledge have previously been shown to be useful as support knowledge. Even in the era of large language models, response generation grounded in knowledge retrieved from additional up-to-date sources remains a practically important approach. While prior work using single-source knowledge has shown a clear positive correlation between the performances of knowledge selection and response generation, there are no existing multi-source datasets for evaluating support knowledge retrieval. Further, prior work has assumed that the knowledge sources available at test time are the same as during training. This unrealistic assumption unnecessarily handicaps models, as new knowledge sources can become available after a model is trained. In this paper, we present a high-quality benchmark named multi-source Wizard of Wikipedia (Ms.WoW) for evaluating multi-source dialogue knowledge selection and response generation. Unlike existing datasets, it contains clean support knowledge, grounded at the utterance level and partitioned into multiple knowledge sources. We further propose a new challenge, dialogue knowledge plug-and-play, which aims to test an already trained dialogue model on using new support knowledge from previously unseen sources in a zero-shot fashion.
One of the main challenges open-domain end-to-end dialogue systems, or chatbots, face is the prevalence of unsafe behavior, such as toxic languages and harmful suggestions. However, existing dialogue datasets do not provide enough annotation to explain and correct such unsafe behavior. In this work, we construct a new dataset called SafeConv for the research of conversational safety: (1) Besides the utterance-level safety labels, SafeConv also provides unsafe spans in an utterance, information able to indicate which words contribute to the detected unsafe behavior; (2) SafeConv provides safe alternative responses to continue the conversation when unsafe behavior detected, guiding the conversation to a gentle trajectory. By virtue of the comprehensive annotation of SafeConv, we benchmark three powerful models for the mitigation of conversational unsafe behavior, including a checker to detect unsafe utterances, a tagger to extract unsafe spans, and a rewriter to convert an unsafe response to a safe version. Moreover, we explore the huge benefits brought by combining the models for explaining the emergence of unsafe behavior and detoxifying chatbots. Experiments show that the detected unsafe behavior could be well explained with unsafe spans and popular chatbots could be detoxified by a huge extent. The dataset is available at https://github.com/mianzhang/SafeConv.
Training a large language model in low-resource settings is challenging since they are susceptible to overfitting with limited generalization abilities. Previous work addresses this issue by approaches such as tunable parameters reduction or data augmentation. However, they either limit the trained models’ expressiveness or rely on task-independent knowledge. In this paper, we propose the Bi-level Finetuning with Task-dependent Similarity Structure framework where all parameters, including the embeddings for unseen tokens, are finetuned with task-dependent information from the training data only. In this framework, a task-dependent similarity structure is learned in a data-driven fashion, which in turn is used to compose soft embeddings from conventional embeddings to be used in training to update all parameters. In order to learn the similarity structure and model parameters, we propose a bi-level optimization algorithm with two stages—search and finetune—to ensure successful learning. Results of experiments on several classification datasets in low-resource scenarios demonstrate that models trained with our method outperform strong baselines. Ablation experiments further support the effectiveness of different components in our framework. Code is available at https://github.com/Sai-Ashish/BFTSS.
Current self-training methods such as standard self-training, co-training, tri-training, and others often focus on improving model performance on a single task, utilizing differences in input features, model architectures, and training processes. However, many tasks in natural language processing are about different but related aspects of language, and models trained for one task can be great teachers for other related tasks. In this work, we propose friend-training, a cross-task self-training framework, where models trained to do different tasks are used in an iterative training, pseudo-labeling, and retraining process to help each other for better selection of pseudo-labels. With two dialogue understanding tasks, conversational semantic role labeling and dialogue rewriting, chosen for a case study, we show that the models trained with the friend-training framework achieve the best performance compared to strong baselines.
Understanding sentence semantics requires an interpretation of the main information from a concrete context. To investigate how individual word contributes to sentence semantics, we propose a perturbation method for unsupervised semantic analysis. We next re-examine SOTA sentence embedding models’ ability to capture the main semantics of a sentence by developing a new evaluation metric to adapt sentence compression datasets for automatic evaluation. Results on three datasets show that unsupervised discourse relation recognition can serve as a general inference task that can more effectively aggregate information to essential contents than several SOTA unsupervised sentence embedding models.
We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.
Pretrained natural language processing (NLP) models have achieved high overall performance, but they still make systematic errors. Instead of manual error analysis, research on slice detection models (SDMs), which automatically identify underperforming groups of datapoints, has caught escalated attention in Computer Vision for both understanding model behaviors and providing insights for future model training and designing. However, little research on SDMs and quantitative evaluation of their effectiveness have been conducted on NLP tasks. Our paper fills the gap by proposing a benchmark named “Discover, Explain, Improve (DEIm)” for classification NLP tasks along with a new SDM Edisa. Edisa discovers coherent and underperforming groups of datapoints; DEIm then unites them under human-understandable concepts and provides comprehensive evaluation tasks and corresponding quantitative metrics. The evaluation in DEIm shows that Edisa can accurately select error-prone datapoints with informative semantic features that summarize error patterns. Detecting difficult datapoints directly boosts model performance without tuning any original model parameters, showing that discovered slices are actionable for users.1
Video-aided grammar induction aims to leverage video information for finding more accurate syntactic grammars for accompanying text. While previous work focuses on building systems for inducing grammars on text that are well-aligned with video content, we investigate the scenario, in which text and video are only in loose correspondence. Such data can be found in abundance online, and the weak correspondence is similar to the indeterminacy problem studied in language acquisition. Furthermore, we build a new model that can better learn video-span correlation without manually designed features adopted by previous work. Experiments show that our model trained only on large-scale YouTube data with no text-video alignment reports strong and robust performances across three unseen datasets, despite domain shift and noisy label issues. Furthermore our model yields higher F1 scores than the previous state-of-the-art systems trained on in-domain data.
Abstractive summarization models typically learn to capture the salient information from scratch implicitly.Recent literature adds extractive summaries as guidance for abstractive summarization models to provide hints of salient content and achieves better performance.However, extractive summaries as guidance could be over strict, leading to information loss or noisy signals.Furthermore, it cannot easily adapt to documents with various abstractiveness.As the number and allocation of salience content pieces varies, it is hard to find a fixed threshold deciding which content should be included in the guidance.In this paper, we propose a novel summarization approach with a flexible and reliable salience guidance, namely SEASON (SaliencE Allocation as Guidance for Abstractive SummarizatiON).SEASON utilizes the allocation of salience expectation to guide abstractive summarization and adapts well to articles in different abstractiveness.Automatic and human evaluations on two benchmark datasets show that the proposed method is effective and reliable.Empirical results on more than one million news articles demonstrate a natural fifteen-fifty salience split for news article sentences, providing a useful insight for composing news articles.
Data augmentation has been a popular method for fine-tuning pre-trained language models to increase model robustness and performance. With augmentation data coming from modifying gold train data (in-sample augmentation) or being harvested from general domain unlabeled data (out-of-sample augmentation), the quality of such data is the key to successful fine-tuning. In this paper, we propose a dynamic data selection method to select effective augmentation data from different augmentation sources according to the model’s learning stage, by identifying a set of augmentation samples that optimally facilitates the learning process of the most current model. The method firstly filters out augmentation samples with noisy pseudo labels through a curriculum learning strategy, then estimates the effectiveness of reserved augmentation data by its influence scores on the current model at every update, allowing the data selection process tightly tailored to model parameters. And the two-stage augmentation strategy considers in-sample augmentation and out-of-sample augmentation in different learning stages. Experiments with both kinds of augmentation data on a variety of sentence classification tasks show that our method outperforms strong baselines, proving the effectiveness of our method. Analysis confirms the dynamic nature of the data effectiveness and the importance of model learning stages in utilization of augmentation data.
We focus on the cross-lingual Text-to-SQL semantic parsing task,where the parsers are expected to generate SQL for non-English utterances based on English database schemas.Intuitively, English translation as side information is an effective way to bridge the language gap,but noise introduced by the translation system may affect parser effectiveness.In this work, we propose a Representation Mixup Framework (Rex) for effectively exploiting translations in the cross-lingual Text-to-SQL task.Particularly, it uses a general encoding layer, a transition layer, and a target-centric layer to properly guide the information flow of the English translation.Experimental results on CSpider and VSpider show that our framework can benefit from cross-lingual training and improve the effectiveness of semantic parsers, achieving state-of-the-art performance.
Language models like BERT and SpanBERT pretrained on open-domain data have obtained impressive gains on various NLP tasks. In this paper, we probe the effectiveness of domain-adaptive pretraining objectives on downstream tasks. In particular, three objectives, including a novel objective focusing on modeling predicate-argument relations, are evaluated on two challenging dialogue understanding tasks. Experimental results demonstrate that domain-adaptive pretraining with proper objectives can significantly improve the performance of a strong baseline on these tasks, achieving the new state-of-the-art performances.
We investigate video-aided grammar induction, which learns a constituency parser from both unlabeled text and its corresponding video. Existing methods of multi-modal grammar induction focus on grammar induction from text-image pairs, with promising results showing that the information from static images is useful in induction. However, videos provide even richer information, including not only static objects but also actions and state changes useful for inducing verb phrases. In this paper, we explore rich features (e.g. action, object, scene, audio, face, OCR and speech) from videos, taking the recent Compound PCFG model as the baseline. We further propose a Multi-Modal Compound PCFG model (MMC-PCFG) to effectively aggregate these rich features from different modalities. Our proposed MMC-PCFG is trained end-to-end and outperforms each individual modality and previous state-of-the-art systems on three benchmarks, i.e. DiDeMo, YouCook2 and MSRVTT, confirming the effectiveness of leveraging video information for unsupervised grammar induction.
This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.
Unsupervised PCFG induction models, which build syntactic structures from raw text, can be used to evaluate the extent to which syntactic knowledge can be acquired from distributional information alone. However, many state-of-the-art PCFG induction models are word-based, meaning that they cannot directly inspect functional affixes, which may provide crucial information for syntactic acquisition in child learners. This work first introduces a neural PCFG induction model that allows a clean ablation of the influence of subword information in grammar induction. Experiments on child-directed speech demonstrate first that the incorporation of subword information results in more accurate grammars with categories that word-based induction models have difficulty finding, and second that this effect is amplified in morphologically richer languages that rely on functional affixes to express grammatical relations. A subsequent evaluation on multilingual treebanks shows that the model with subword information achieves state-of-the-art results on many languages, further supporting a distributional model of syntactic acquisition.
In order to alleviate the huge demand for annotated datasets for different tasks, many recent natural language processing datasets have adopted automated pipelines for fast-tracking usable data. However, model training with such datasets poses a challenge because popular optimization objectives are not robust to label noise induced in the annotation generation process. Several noise-robust losses have been proposed and evaluated on tasks in computer vision, but they generally use a single dataset-wise hyperparamter to control the strength of noise resistance. This work proposes novel instance-adaptive training frameworks to change single dataset-wise hyperparameters of noise resistance in such losses to be instance-wise. Such instance-wise noise resistance hyperparameters are predicted by special instance-level label quality predictors, which are trained along with the main classification models. Experiments on noisy and corrupted NLP datasets show that proposed instance-adaptive training frameworks help increase the noise-robustness provided by such losses, promoting the use of the frameworks and associated losses in NLP models trained with noisy data.
Word Sense Disambiguation (WSD) aims to automatically identify the exact meaning of one word according to its context. Existing supervised models struggle to make correct predictions on rare word senses due to limited training data and can only select the best definition sentence from one predefined word sense inventory (e.g., WordNet). To address the data sparsity problem and generalize the model to be independent of one predefined inventory, we propose a gloss alignment algorithm that can align definition sentences (glosses) with the same meaning from different sense inventories to collect rich lexical knowledge. We then train a model to identify semantic equivalence between a target word in context and one of its glosses using these aligned inventories, which exhibits strong transfer capability to many WSD tasks. Experiments on benchmark datasets show that the proposed method improves predictions on both frequent and rare word senses, outperforming prior work by 1.2% on the All-Words WSD Task and 4.3% on the Low-Shot WSD Task. Evaluation on WiC Task also indicates that our method can better capture word meanings in context.
Recent work in unsupervised parsing has tried to incorporate visual information into learning, but results suggest that these models need linguistic bias to compete against models that only rely on text. This work proposes grammar induction models which use visual information from images for labeled parsing, and achieve state-of-the-art results on grounded grammar induction on several languages. Results indicate that visual information is especially helpful in languages where high frequency words are more broadly distributed. Comparison between models with and without visual information shows that the grounded models are able to use visual information for proposing noun phrases, gathering useful information from images for unknown words, and achieving better performance at prepositional phrase attachment prediction.
Syntactic surprisal has been shown to have an effect on human sentence processing, and can be predicted from prefix probabilities of generative incremental parsers. Recent state-of-the-art incremental generative neural parsers are able to produce accurate parses and surprisal values but have unbounded stack memory, which may be used by the neural parser to maintain explicit in-order representations of all previously parsed words, inconsistent with results of human memory experiments. In contrast, humans seem to have a bounded working memory, demonstrated by inhibited performance on word recall in multi-clause sentences (Bransford and Franks, 1971), and on center-embedded sentences (Miller and Isard,1964). Bounded statistical parsers exist, but are less accurate than neural parsers in predict-ing reading times. This paper describes a neural incremental generative parser that is able to provide accurate surprisal estimates and can be constrained to use a bounded stack. Results show that the accuracy gains of neural parsers can be reliably extended to psycholinguistic modeling without risk of distortion due to un-bounded working memory.
Recent progress in grammar induction has shown that grammar induction is possible without explicit assumptions of language specific knowledge. However, evaluation of induced grammars usually has ignored phrasal labels, an essential part of a grammar. Experiments in this work using a labeled evaluation metric, RH, show that linguistically motivated predictions about grammar sparsity and use of categories can only be revealed through labeled evaluation. Furthermore, depth-bounding as an implementation of human memory constraints in grammar inducers is still effective with labeled evaluation on multilingual transcribed child-directed utterances.
Unsupervised PCFG inducers hypothesize sets of compact context-free rules as explanations for sentences. PCFG induction not only provides tools for low-resource languages, but also plays an important role in modeling language acquisition (Bannard et al., 2009; Abend et al. 2017). However, current PCFG induction models, using word tokens as input, are unable to incorporate semantics and morphology into induction, and may encounter issues of sparse vocabulary when facing morphologically rich languages. This paper describes a neural PCFG inducer which employs context embeddings (Peters et al., 2018) in a normalizing flow model (Dinh et al., 2015) to extend PCFG induction to use semantic and morphological information. Linguistically motivated sparsity and categorical distance constraints are imposed on the inducer as regularization. Experiments show that the PCFG induction model with normalizing flow produces grammars with state-of-the-art accuracy on a variety of different languages. Ablation further shows a positive effect of normalizing flow, context embeddings and proposed regularizers.
In unsupervised grammar induction, data likelihood is known to be only weakly correlated with parsing accuracy, especially at convergence after multiple runs. In order to find a better indicator for quality of induced grammars, this paper correlates several linguistically- and psycholinguistically-motivated predictors to parsing accuracy on a large multilingual grammar induction evaluation data set. Results show that variance of average surprisal (VAS) better correlates with parsing accuracy than data likelihood and that using VAS instead of data likelihood for model selection provides a significant accuracy boost. Further evidence shows VAS to be a better candidate than data likelihood for predicting word order typology classification. Analyses show that VAS seems to separate content words from function words in natural language grammars, and to better arrange words with different frequencies into separate classes that are more consistent with linguistic theory.
There has been recent interest in applying cognitively- or empirically-motivated bounds on recursion depth to limit the search space of grammar induction models (Ponvert et al., 2011; Noji and Johnson, 2016; Shain et al., 2016). This work extends this depth-bounding approach to probabilistic context-free grammar induction (DB-PCFG), which has a smaller parameter space than hierarchical sequence models, and therefore more fully exploits the space reductions of depth-bounding. Results for this model on grammar acquisition from transcribed child-directed speech and newswire text exceed or are competitive with those of other models when evaluated on parse accuracy. Moreover, grammars acquired from this model demonstrate a consistent use of category labels, something which has not been demonstrated by other acquisition models.
When interpreting questions in a virtual patient dialogue system one must inevitably tackle the challenge of a long tail of relatively infrequently asked questions. To make progress on this challenge, we investigate the use of paraphrasing for data augmentation and neural memory-based classification, finding that the two methods work best in combination. In particular, we find that the neural memory-based approach not only outperforms a straight CNN classifier on low frequency questions, but also takes better advantage of the augmented data created by paraphrasing, together yielding a nearly 10% absolute improvement in accuracy on the least frequently asked questions.
There have been several recent attempts to improve the accuracy of grammar induction systems by bounding the recursive complexity of the induction model. Modern depth-bounded grammar inducers have been shown to be more accurate than early unbounded PCFG inducers, but this technique has never been compared against unbounded induction within the same system, in part because most previous depth-bounding models are built around sequence models, the complexity of which grows exponentially with the maximum allowed depth. The present work instead applies depth bounds within a chart-based Bayesian PCFG inducer, where bounding can be switched on and off, and then samples trees with or without bounding. Results show that depth-bounding is indeed significantly effective in limiting the search space of the inducer and thereby increasing accuracy of resulting parsing model, independent of the contribution of modern Bayesian induction techniques. Moreover, parsing results on English, Chinese and German show that this bounded model is able to produce parse trees more accurately than or competitively with state-of-the-art constituency grammar induction models.
For medical students, virtual patient dialogue systems can provide useful training opportunities without the cost of employing actors to portray standardized patients. This work utilizes word- and character-based convolutional neural networks (CNNs) for question identification in a virtual patient dialogue system, outperforming a strong word- and character-based logistic regression baseline. While the CNNs perform well given sufficient training data, the best system performance is ultimately achieved by combining CNNs with a hand-crafted pattern matching system that is robust to label sparsity, providing a 10% boost in system accuracy and an error reduction of 47% as compared to the pattern-matching system alone.
This paper presents a new memory-bounded left-corner parsing model for unsupervised raw-text syntax induction, using unsupervised hierarchical hidden Markov models (UHHMM). We deploy this algorithm to shed light on the extent to which human language learners can discover hierarchical syntax through distributional statistics alone, by modeling two widely-accepted features of human language acquisition and sentence processing that have not been simultaneously modeled by any existing grammar induction algorithm: (1) a left-corner parsing strategy and (2) limited working memory capacity. To model realistic input to human language learners, we evaluate our system on a corpus of child-directed speech rather than typical newswire corpora. Results beat or closely match those of three competing systems.