Lihong Li


2021

pdf bib
The First Workshop on Evaluations and Assessments of Neural Conversation Systems
Wei Wei | Bo Dai | Tuo Zhao | Lihong Li | Diyi Yang | Yun-Nung Chen | Y-Lan Boureau | Asli Celikyilmaz | Alborz Geramifard | Aman Ahuja | Haoming Jiang
The First Workshop on Evaluations and Assessments of Neural Conversation Systems

2018

pdf bib
Neural Approaches to Conversational AI
Jianfeng Gao | Michel Galley | Lihong Li
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

This tutorial surveys neural approaches to conversational AI that were developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) social bots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between neural approaches and traditional symbolic approaches, and discuss the progress we have made and challenges we are facing, using specific systems and models as case studies.

pdf bib
Subgoal Discovery for Hierarchical Dialogue Policy Learning
Da Tang | Xiujun Li | Jianfeng Gao | Chong Wang | Lihong Li | Tony Jebara
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Developing agents to engage in complex goal-oriented dialogues is challenging partly because the main learning signals are very sparse in long conversations. In this paper, we propose a divide-and-conquer approach that discovers and exploits the hidden structure of the task to enable efficient policy learning. First, given successful example dialogues, we propose the Subgoal Discovery Network (SDN) to divide a complex goal-oriented task into a set of simpler subgoals in an unsupervised fashion. We then use these subgoals to learn a multi-level policy by hierarchical reinforcement learning. We demonstrate our method by building a dialogue agent for the composite task of travel planning. Experiments with simulated and real users show that our approach performs competitively against a state-of-the-art method that requires human-defined subgoals. Moreover, we show that the learned subgoals are often human comprehensible.

2017

pdf bib
End-to-End Task-Completion Neural Dialogue Systems
Xiujun Li | Yun-Nung Chen | Lihong Li | Jianfeng Gao | Asli Celikyilmaz
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

One of the major drawbacks of modularized task-completion dialogue systems is that each module is trained individually, which presents several challenges. For example, downstream modules are affected by earlier modules, and the performance of the entire system is not robust to the accumulated errors. This paper presents a novel end-to-end learning framework for task-completion dialogue systems to tackle such issues. Our neural dialogue system can directly interact with a structured database to assist users in accessing information and accomplishing certain tasks. The reinforcement learning based dialogue manager offers robust capabilities to handle noises caused by other components of the dialogue system. Our experiments in a movie-ticket booking domain show that our end-to-end system not only outperforms modularized dialogue system baselines for both objective and subjective evaluation, but also is robust to noises as demonstrated by several systematic experiments with different error granularity and rates specific to the language understanding module.

pdf bib
Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning
Baolin Peng | Xiujun Li | Lihong Li | Jianfeng Gao | Asli Celikyilmaz | Sungjin Lee | Kam-Fai Wong
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical framework of options over Markov Decision Processes (MDPs), and proposing a hierarchical deep reinforcement learning approach to learning a dialogue manager that operates at different temporal scales. The dialogue manager consists of: (1) a top-level dialogue policy that selects among subtasks or options, (2) a low-level dialogue policy that selects primitive actions to complete the subtask given by the top-level policy, and (3) a global state tracker that helps ensure all cross-subtask constraints be satisfied. Experiments on a travel planning task with simulated and real users show that our approach leads to significant improvements over three baselines, two based on handcrafted rules and the other based on flat deep reinforcement learning.

pdf bib
Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access
Bhuwan Dhingra | Lihong Li | Xiujun Li | Jianfeng Gao | Yun-Nung Chen | Faisal Ahmed | Li Deng
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes KB-InfoBot - a multi-turn dialogue agent which helps users search Knowledge Bases (KBs) without composing complicated queries. Such goal-oriented dialogue agents typically need to interact with an external database to access real-world knowledge. Previous systems achieved this by issuing a symbolic query to the KB to retrieve entries based on their attributes. However, such symbolic operations break the differentiability of the system and prevent end-to-end training of neural dialogue agents. In this paper, we address this limitation by replacing symbolic queries with an induced “soft” posterior distribution over the KB that indicates which entities the user is interested in. Integrating the soft retrieval process with a reinforcement learner leads to higher task success rate and reward in both simulations and against real users. We also present a fully neural end-to-end agent, trained entirely from user feedback, and discuss its application towards personalized dialogue agents.

2016

pdf bib
Deep Reinforcement Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads
Ji He | Mari Ostendorf | Xiaodong He | Jianshu Chen | Jianfeng Gao | Lihong Li | Li Deng
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Deep Reinforcement Learning with a Natural Language Action Space
Ji He | Jianshu Chen | Xiaodong He | Jianfeng Gao | Lihong Li | Li Deng | Mari Ostendorf
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)