Lijie Hu


2024

pdf bib
Dissecting Fine-Tuning Unlearning in Large Language Models
Yihuai Hong | Yuelin Zou | Lijie Hu | Ziqian Zeng | Di Wang | Haiqin Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Fine-tuning-based unlearning methods prevail for erasing targeted harmful, sensitive, or copyrighted information within large language models while preserving overall capabilities. However, the true effectiveness of the methods is unclear. In this paper, we delve into the limitations of fine-tuning-based unlearning through activation patching and parameter restoration experiments. Our findings reveal that these methods alter the model’s knowledge retrieval process, rather than genuinely erasing the problematic knowledge embedded in the model parameters. Furthermore, behavioral tests demonstrate that the unlearning mechanisms inevitably impact the global behavior of the models, affecting unrelated knowledge or capabilities. Our work advocates the development of more resilient unlearning techniques for truly erasing knowledge.

pdf bib
Private Language Models via Truncated Laplacian Mechanism
Tianhao Huang | Tao Yang | Ivan Habernal | Lijie Hu | Di Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recently it has been shown that deep learning models for NLP tasks are prone to attacks that can even reconstruct the verbatim training texts. To prevent privacy leakage, researchers have investigated word-level perturbations, relying on the formal guarantees of differential privacy (DP) in the embedding space. However, many existing approaches either achieve unsatisfactory performance in the high privacy regime when using the Laplacian or Gaussian mechanism, or resort to weaker relaxations of DP that are inferior to the canonical DP in terms of privacy strength. This raises the question of whether a new method for private word embedding can be designed to overcome these limitations. In this paper, we propose a novel private embedding method called the high dimensional truncated Laplacian mechanism. Specifically, we introduce a non-trivial extension of the truncated Laplacian mechanism, which was previously only investigated in one-dimensional space cases. Theoretically, we show that our method has a lower variance compared to the previous private word embedding methods. To further validate its effectiveness, we conduct comprehensive experiments on private embedding and downstream tasks using three datasets. Remarkably, even in the high privacy regime, our approach only incurs a slight decrease in utility compared to the non-private scenario.

pdf bib
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu | Ivan Habernal | Lei Shen | Di Wang
Findings of the Association for Computational Linguistics: EACL 2024

Recent developments in deep learning have led to great success in various natural language processing (NLP) tasks. However, these applications may involve data that contain sensitive information. Therefore, how to achieve good performance while also protecting the privacy of sensitive data is a crucial challenge in NLP. To preserve privacy, Differential Privacy (DP), which can prevent reconstruction attacks and protect against potential side knowledge, is becoming a de facto technique for private data analysis. In recent years, NLP in DP models (DP-NLP) has been studied from different perspectives, which deserves a comprehensive review. In this paper, we provide the first systematic review of recent advances in DP deep learning models in NLP. In particular, we first discuss some differences and additional challenges of DP-NLP compared with the standard DP deep learning. Then, we investigate some existing work on DP-NLP andpresent its recent developments from three aspects: gradient perturbation based methods, embedding vector perturbation based methods, and ensemble model based methods. We also discuss some challenges and future directions.

pdf bib
UniMEEC: Towards Unified Multimodal Emotion Recognition and Emotion Cause
Guimin Hu | Zhihong Zhu | Daniel Hershcovich | Lijie Hu | Hasti Seifi | Jiayuan Xie
Findings of the Association for Computational Linguistics: EMNLP 2024

Multimodal emotion recognition in conversation (MERC) and multimodal emotion-cause pair extraction (MECPE) have recently garnered significant attention. Emotions are the expression of affect or feelings; responses to specific events, or situations – known as emotion causes. Both collectively explain the causality between human emotion and intents. However, existing works treat emotion recognition and emotion cause extraction as two individual problems, ignoring their natural causality. In this paper, we propose a Unified Multimodal Emotion recognition and Emotion-Cause analysis framework (UniMEEC) to explore the causality between emotion and emotion cause. Concretely, UniMEEC reformulates the MERC and MECPE tasks as mask prediction problems and unifies them with a causal prompt template. To differentiate the modal effects, UniMEEC proposes a multimodal causal prompt to probe the pre-trained knowledge specified to modality and implements cross-task and cross-modality interactions under task-oriented settings. Experiment results on four public benchmark datasets verify the model performance on MERC and MECPE tasks and achieve consistent improvements compared with the previous state-of-the-art methods.