Lilong Xue


2024

pdf bib
AutoRE: Document-Level Relation Extraction with Large Language Models
Lilong Xue | Dan Zhang | Yuxiao Dong | Jie Tang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE’s best performance, achieving state-of-the-art results, surpassing TAG by 10.03% and 9.03% respectively on the dev and test set. The code is available and the demonstration video is provided.

2023

pdf bib
Parameter-Efficient Prompt Tuning Makes Generalized and Calibrated Neural Text Retrievers
Weng Tam | Xiao Liu | Kaixuan Ji | Lilong Xue | Jiahua Liu | Tao Li | Yuxiao Dong | Jie Tang
Findings of the Association for Computational Linguistics: EMNLP 2023

Prompt tuning attempts to update few task-specific parameters in pre-trained models. It has achieved comparable performance to fine-tuning of the full parameter set on both language understanding and generation tasks. In this work, we study the problem of prompt tuning for neural text retrievers. We introduce parameter-efficient prompt tuning for text retrieval across in-domain, cross-domain, and cross-topic settings. Through an extensive analysis, we show that the strategy can mitigate the two issues—parameter-inefficiency and weak generalizability—faced by fine-tuning based retrieval methods. Notably, it can significantly improve the out-of-domain zero-shot generalization of the retrieval models. By updating only 0.1% of the model parameters, the prompt tuning strategy can help retrieval models achieve better generalization performance than traditional methods in which all parameters are updated. Finally, to facilitate research on retrievers’ cross-topic generalizability, we curate and release an academic retrieval dataset with 18K query-results pairs in 87 topics, making it the largest topic-specific one to date.