Lin Ma


2024

pdf bib
Tables as Texts or Images: Evaluating the Table Reasoning Ability of LLMs and MLLMs
Naihao Deng | Zhenjie Sun | Ruiqi He | Aman Sikka | Yulong Chen | Lin Ma | Yue Zhang | Rada Mihalcea
Findings of the Association for Computational Linguistics: ACL 2024

Tables contrast with unstructured text data by its structure to organize the information.In this paper, we investigate the efficiency of various LLMs in interpreting tabular data through different prompting strategies and data formats. Our analysis extends across six benchmarks for table-related tasks such as question-answering and fact-checking. We pioneer in the assessment of LLMs’ performance on image-based table representation. Specifically, we compare five text-based and three image-based table representations, revealing the influence of representation and prompting on LLM performance. We hope our study provides researchers insights into optimizing LLMs’ application in table-related tasks.

pdf bib
A Multimodal In-Context Tuning Approach for E-Commerce Product Description Generation
Yunxin Li | Baotian Hu | Wenhan Luo | Lin Ma | Yuxin Ding | Min Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing the automatic generation of product descriptions in a wide range of applications. Data and code are at https://github.com/HITsz-TMG/Multimodal-In-Context-Tuning

2023

pdf bib
A Multi-Modal Context Reasoning Approach for Conditional Inference on Joint Textual and Visual Clues
Yunxin Li | Baotian Hu | Chen Xinyu | Yuxin Ding | Lin Ma | Min Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conditional inference on joint textual and visual clues is a multi-modal reasoning task that textual clues provide prior permutation or external knowledge, which are complementary with visual content and pivotal to deducing the correct option. Previous methods utilizing pretrained vision-language models (VLMs) have achieved impressive performances, yet they show a lack of multimodal context reasoning capability, especially for text-modal information. To address this issue, we propose a Multi-modal Context Reasoning approach, named ModCR. Compared to VLMs performing reasoning via cross modal semantic alignment, it regards the given textual abstract semantic and objective image information as the pre-context information and embeds them into the language model to perform context reasoning. Different from recent vision-aided language models used in natural language processing, ModCR incorporates the multi-view semantic alignment information between language and vision by introducing the learnable alignment prefix between image and text in the pretrained language model. This makes the language model well-suitable for such multi-modal reasoning scenario on joint textual and visual clues. We conduct extensive experiments on two corresponding data sets and experimental results show significantly improved performance (exact gain by 4.8% on PMR test set) compared to previous strong baselines.

pdf bib
A Neural Divide-and-Conquer Reasoning Framework for Image Retrieval from Linguistically Complex Text
Yunxin Li | Baotian Hu | Yuxin Ding | Lin Ma | Min Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pretrained Vision-Language Models (VLMs) have achieved remarkable performance in image retrieval from text. However, their performance drops drastically when confronted with linguistically complex texts that they struggle to comprehend. Inspired by the Divide-and-Conquer algorithm and dual-process theory, in this paper, we regard linguistically complex texts as compound proposition texts composed of multiple simple proposition sentences and propose an end-to-end Neural Divide-and-Conquer Reasoning framework, dubbed NDCR. It contains three main components: 1) Divide: a proposition generator divides the compound proposition text into simple proposition sentences and produces their corresponding representations, 2) Conquer: a pretrained VLMs-based visual-linguistic interactor achieves the interaction between decomposed proposition sentences and images, 3) Combine: a neural-symbolic reasoner combines the above reasoning states to obtain the final solution via a neural logic reasoning approach. According to the dual-process theory, the visual-linguistic interactor and neural-symbolic reasoner could be regarded as analogical reasoning System 1 and logical reasoning System 2. We conduct extensive experiments on a challenging image retrieval from contextual descriptions data set. Experimental results and analyses indicate NDCR significantly improves performance in the complex image-text reasoning problem.

2022

pdf bib
Contrastive Video-Language Learning with Fine-grained Frame Sampling
Zixu Wang | Yujie Zhong | Yishu Miao | Lin Ma | Lucia Specia
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite recent progress in video and language representation learning, the weak or sparse correspondence between the two modalities remains a bottleneck in the area. Most video-language models are trained via pair-level loss to predict whether a pair of video and text is aligned. However, even in paired video-text segments, only a subset of the frames are semantically relevant to the corresponding text, with the remainder representing noise; where the ratio of noisy frames is higher for longer videos. We propose FineCo (Fine-grained Contrastive Loss for Frame Sampling), an approach to better learn video and language representations with a fine-grained contrastive objective operating on video frames. It helps distil a video by selecting the frames that are semantically equivalent to the text, improving cross-modal correspondence. Building on the well established VideoCLIP model as a starting point, FineCo achieves state-of-the-art performance on YouCookII, a text-video retrieval benchmark with long videos. FineCo also achieves competitive results on text-video retrieval (MSR-VTT), and video question answering datasets (MSR-VTT QA and MSR-VTT MC) with shorter videos.

2019

pdf bib
Weakly-Supervised Spatio-Temporally Grounding Natural Sentence in Video
Zhenfang Chen | Lin Ma | Wenhan Luo | Kwan-Yee Kenneth Wong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we address a novel task, namely weakly-supervised spatio-temporally grounding natural sentence in video. Specifically, given a natural sentence and a video, we localize a spatio-temporal tube in the video that semantically corresponds to the given sentence, with no reliance on any spatio-temporal annotations during training. First, a set of spatio-temporal tubes, referred to as instances, are extracted from the video. We then encode these instances and the sentence using our newly proposed attentive interactor which can exploit their fine-grained relationships to characterize their matching behaviors. Besides a ranking loss, a novel diversity loss is introduced to train our attentive interactor to strengthen the matching behaviors of reliable instance-sentence pairs and penalize the unreliable ones. We also contribute a dataset, called VID-sentence, based on the ImageNet video object detection dataset, to serve as a benchmark for our task. Results from extensive experiments demonstrate the superiority of our model over the baseline approaches.

2018

pdf bib
Temporally Grounding Natural Sentence in Video
Jingyuan Chen | Xinpeng Chen | Lin Ma | Zequn Jie | Tat-Seng Chua
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We introduce an effective and efficient method that grounds (i.e., localizes) natural sentences in long, untrimmed video sequences. Specifically, a novel Temporal GroundNet (TGN) is proposed to temporally capture the evolving fine-grained frame-by-word interactions between video and sentence. TGN sequentially scores a set of temporal candidates ended at each frame based on the exploited frame-by-word interactions, and finally grounds the segment corresponding to the sentence. Unlike traditional methods treating the overlapping segments separately in a sliding window fashion, TGN aggregates the historical information and generates the final grounding result in one single pass. We extensively evaluate our proposed TGN on three public datasets with significant improvements over the state-of-the-arts. We further show the consistent effectiveness and efficiency of TGN through an ablation study and a runtime test.