In this work, we designed unbiased prompts to systematically evaluate the psychological safety of large language models (LLMs). First, we tested five different LLMs by using two personality tests: Short Dark Triad (SD-3) and Big Five Inventory (BFI). All models scored higher than the human average on SD-3, suggesting a relatively darker personality pattern. Despite being instruction fine-tuned with safety metrics to reduce toxicity, InstructGPT, GPT-3.5, and GPT-4 still showed dark personality patterns; these models scored higher than self-supervised GPT-3 on the Machiavellianism and narcissism traits on SD-3. Then, we evaluated the LLMs in the GPT series by using well-being tests to study the impact of fine-tuning with more training data. We observed a continuous increase in the well-being scores of GPT models. Following these observations, we showed that fine-tuning Llama-2-chat-7B with responses from BFI using direct preference optimization could effectively reduce the psychological toxicity of the model. Based on the findings, we recommended the application of systematic and comprehensive psychological metrics to further evaluate and improve the safety of LLMs.
Analogical reasoning plays a critical role in human cognition, enabling us to understand new concepts by associating them with familiar ones. Previous research in the AI community has mainly focused on identifying and generating analogies and then examining their quality under human evaluation, which overlooks the practical application of these analogies in real-world settings. Inspired by the human education process, in this paper, we propose to investigate how analogies created by teacher language models (LMs) can assist student LMs in understanding scientific concepts, thereby aligning more closely with practical scenarios. Our results suggest that free-form analogies can indeed aid LMs in understanding concepts. Additionally, analogies generated by student LMs can improve their own performance on scientific question answering, demonstrating their capability to use analogies for self-learning new knowledge. Resources are available athttps://github.com/siyuyuan/SCUA.
Large Language Models (LLMs) have shown impressive capabilities but also a concerning tendency to hallucinate. This paper presents RefChecker, a framework that introduces claim-triplets to represent claims in LLM responses, aiming to detect fine-grained hallucinations. In RefChecker, an extractor generates claim-triplets from a response, which are then evaluated by a checker against a reference. We delineate three task settings: Zero, Noisy and Accurate Context, to reflect various real-world use cases. We curated a benchmark spanning various NLP tasks and annotated 11k claim-triplets from 2.1k responses by seven LLMs. RefChecker supports both proprietary and open-source models as the extractor and checker. Experiments demonstrate that claim-triplets enable superior hallucination detection, compared to other granularities such as response, sentence and sub-sentence level claims. RefChecker outperforms prior methods by 18.2 to 27.2 points on our benchmark and the checking results of RefChecker are strongly aligned with human judgments.
The rise of large language models (LLMs) has significantly influenced the quality of information in decision-making systems, leading to the prevalence of AI-generated content and challenges in detecting misinformation and managing conflicting information, or “inter-evidence conflicts.” This study introduces a method for generating diverse, validated evidence conflicts to simulate real-world misinformation scenarios. We evaluate conflict detection methods, including Natural Language Inference (NLI) models, factual consistency (FC) models, and LLMs, on these conflicts (RQ1) and analyze LLMs’ conflict resolution behaviors (RQ2). Our key findings include: (1) NLI and LLM models exhibit high precision in detecting answer conflicts, though weaker models suffer from low recall; (2) FC models struggle with lexically similar answer conflicts, while NLI and LLM models handle these better; and (3) stronger models like GPT-4 show robust performance, especially with nuanced conflicts. For conflict resolution, LLMs often favor one piece of conflicting evidence without justification and rely on internal knowledge if they have prior beliefs.
The rapid growth of scientific literature imposes significant challenges for researchers endeavoring to stay updated with the latest advancements in their fields and delve into new areas. We introduce OpenResearcher, an innovative platform that leverages Artificial Intelligence (AI) techniques to accelerate the research process by answering diverse questions from researchers. OpenResearcher is built based on Retrieval-Augmented Generation (RAG) to integrate Large Language Models (LLMs) with up-to-date, domain-specific knowledge. Moreover, we develop various tools for OpenResearcher to understand researchers’ queries, search from the scientific literature, filter retrieved information, provide accurate and comprehensive answers, and self-refine these answers. OpenResearcher can flexibly use these tools to balance efficiency and effectiveness. As a result, OpenResearcher enables researchers to save time and increase their potential to discover new insights and drive scientific breakthroughs. Demo, video, and code are available at: https://github.com/GAIR-NLP/OpenResearcher.
Narrative reasoning relies on the understanding of eventualities in story contexts, which requires a wealth of background world knowledge. To help machines leverage such knowledge, existing solutions can be categorized into two groups. Some focus on implicitly modeling eventuality knowledge by pretraining language models (LMs) with eventuality-aware objectives. However, this approach breaks down knowledge structures and lacks interpretability. Others explicitly collect world knowledge of eventualities into structured eventuality-centric knowledge graphs (KGs). However, existing research on leveraging these knowledge sources for free-texts is limited. In this work, we propose an initial comprehensive framework called EventGround, which aims to tackle the problem of grounding free-texts to eventuality-centric KGs for contextualized narrative reasoning. We identify two critical problems in this direction: the event representation and sparsity problems. We provide simple yet effective parsing and partial information extraction methods to tackle these problems. Experimental results demonstrate that our approach consistently outperforms baseline models when combined with graph neural network (GNN) or large language model (LLM) based graph reasoning models. Our framework, incorporating grounded knowledge, achieves state-of-the-art performance while providing interpretable evidence.
Discourse analysis is an important task because it models intrinsic semantic structures between sentences in a document. Discourse markers are natural representations of discourse in our daily language. One challenge is that the markers as well as pre-defined and human-labeled discourse relations can be ambiguous when describing the semantics between sentences. We believe that a better approach is to use a contextual-dependent distribution over the markers to express discourse information. In this work, we propose to learn a Distributed Marker Representation (DMR) by utilizing the (potentially) unlimited discourse marker data with a latent discourse sense, thereby bridging markers with sentence pairs. Such representations can be learned automatically from data without supervision, and in turn provide insights into the data itself. Experiments show the SOTA performance of our DMR on the implicit discourse relation recognition task and strong interpretability. Our method also offers a valuable tool to understand complex ambiguity and entanglement among discourse markers and manually defined discourse relations.
Scientific research is inherently shaped by its authors’ perspectives, influenced by various factorssuch as their personality, community, or society. Junior researchers often face challenges in identifying the perspectives reflected in the existing literature and struggle to develop their own viewpoints. In response to this issue, we introduce PersLEARN , a tool designed to facilitate the cultivation of scientific perspectives, starting from a basic seed idea and progressing to a well-articulated framework. By interacting with a prompt-based model, researchers can develop their perspectives explicitly. Our humanstudy reveals that scientific perspectives developed by students using PersLEARN exhibit a superior level of logical coherence and depth compared to those that did not. Furthermore, our pipeline outperforms baseline approaches across multiple domains of literature from various perspectives. These results suggest that PersLEARN could help foster a greater appreciation of diversity in scientific perspectives as an essential component of research training.
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields. However, LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations in many real-world applications. Existing works for detecting hallucinations in LLMs either rely on external knowledge for reference retrieval or require sampling multiple responses from the LLM for consistency verification, making these methods costly and inefficient. In this paper, we propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs. Our approach imitates human focus in factuality checking from three aspects: 1) focus on the most informative and important keywords in the given text; 2) focus on the unreliable tokens in historical context which may lead to a cascade of hallucinations; and 3) focus on the token properties such as token type and token frequency. Experimental results on relevant datasets demonstrate the effectiveness of our proposed method, which achieves state-of-the-art performance across all the evaluation metrics and eliminates the need for additional information.
Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, StoryAnalogy, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on StoryAnalogy, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in StoryAnalogy can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.
Recent work on non-autoregressive neural machine translation (NAT) aims at improving the efficiency by parallel decoding without sacrificing the quality. However, existing NAT methods are either inferior to Transformer or require multiple decoding passes, leading to reduced speedup. We propose the Glancing Language Model (GLM) for single-pass parallel generation models. With GLM, we develop Glancing Transformer (GLAT) for machine translation. With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8×-15× speedup. Note that GLAT does not modify the network architecture, which is a training method to learn word interdependency. Experiments on multiple WMT language directions show that GLAT outperforms all previous single pass non-autoregressive methods, and is nearly comparable to Transformer, reducing the gap to 0.25-0.9 BLEU points.
Document-level relation extraction aims to identify relations between entities in a whole document. Prior efforts to capture long-range dependencies have relied heavily on implicitly powerful representations learned through (graph) neural networks, which makes the model less transparent. To tackle this challenge, in this paper, we propose LogiRE, a novel probabilistic model for document-level relation extraction by learning logic rules. LogiRE treats logic rules as latent variables and consists of two modules: a rule generator and a relation extractor. The rule generator is to generate logic rules potentially contributing to final predictions, and the relation extractor outputs final predictions based on the generated logic rules. Those two modules can be efficiently optimized with the expectation-maximization (EM) algorithm. By introducing logic rules into neural networks, LogiRE can explicitly capture long-range dependencies as well as enjoy better interpretation. Empirical results show that significantly outperforms several strong baselines in terms of relation performance and logical consistency. Our code is available at https://github.com/rudongyu/LogiRE.
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.
Paraphrasing plays an important role in various natural language processing (NLP) tasks, such as question answering, information retrieval and sentence simplification. Recently, neural generative models have shown promising results in paraphrase generation. However, prior work mainly focused on single paraphrase generation, while ignoring the fact that diversity is essential for enhancing generalization capability and robustness of downstream applications. Few works have been done to solve diverse paraphrase generation. In this paper, we propose a novel approach with two discriminators and multiple generators to generate a variety of different paraphrases. A reinforcement learning algorithm is applied to train our model. Our experiments on two real-world datasets demonstrate that our model not only gains a significant increase in diversity but also improves generation quality over several state-of-the-art baselines.
Text-based question answering (TBQA) has been studied extensively in recent years. Most existing approaches focus on finding the answer to a question within a single paragraph. However, many difficult questions require multiple supporting evidence from scattered text among two or more documents. In this paper, we propose Dynamically Fused Graph Network (DFGN), a novel method to answer those questions requiring multiple scattered evidence and reasoning over them. Inspired by human’s step-by-step reasoning behavior, DFGN includes a dynamic fusion layer that starts from the entities mentioned in the given query, explores along the entity graph dynamically built from the text, and gradually finds relevant supporting entities from the given documents. We evaluate DFGN on HotpotQA, a public TBQA dataset requiring multi-hop reasoning. DFGN achieves competitive results on the public board. Furthermore, our analysis shows DFGN produces interpretable reasoning chains.