Linchao Zhu


2024

pdf bib
VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft
Yubo Dong | Xukun Zhu | Zhengzhe Pan | Linchao Zhu | Yi Yang
Findings of the Association for Computational Linguistics: ACL 2024

In this paper, we aim to evaluate multi-agent systems against complex dependencies, including spatial, causal, and temporal constraints. First, we construct a new benchmark, named VillagerBench, within the Minecraft environment. VillagerBench comprises diverse tasks crafted to test various aspects of multi-agent collaboration, from workload distribution to dynamic adaptation and synchronized task execution. Second, we introduce a Directed Acyclic Graph Multi-Agent Framework (VillagerAgent) to resolve complex inter-agent dependencies and enhance collaborative efficiency. This solution incorporates a task decomposer that creates a directed acyclic graph (DAG) for structured task management, an agent controller for task distribution, and a state manager for tracking environmental and agent data.Our empirical evaluation on VillagerBench demonstrates that VillagerAgentoutperforms the existing AgentVerse model, reducing hallucinations and improving task decomposition efficacy. The results underscore VillagerAgent’s potential in advancing multi-agent collaboration, offering a scalable and generalizable solution in dynamic environments. Source code is open-source on GitHub.

pdf bib
FragRel: Exploiting Fragment-level Relations in the External Memory of Large Language Models
Xihang Yue | Linchao Zhu | Yi Yang
Findings of the Association for Computational Linguistics: ACL 2024

To process contexts with unlimited length using Large Language Models (LLMs), recent studies explore hierarchically managing the long text. Only several text fragments are taken from the external memory and passed into the temporary working memory, i.e., LLM’s context window. However, existing approaches isolatedly handle the text fragments without considering their structural connections, thereby suffering limited capability on texts with intensive inter-relations, e.g., coherent stories and code repositories. This work attempts to resolve this by exploiting the fragment-level relations in external memory. First, we formulate the fragment-level relations and present several instantiations for different text types. Next, we introduce a relation-aware fragment assessment criteria upon previous independent fragment assessment. Finally, we present the fragment-connected Hierarchical Memory based LLM. We validate the benefits of involving these relations on long story understanding, repository-level code generation, and long-term chatting.

2023

pdf bib
WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
Wenjie Zhuo | Yifan Sun | Xiaohan Wang | Linchao Zhu | Yi Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper presents a whitening-based contrastive learning method for sentence embedding learning (WhitenedCSE), which combines contrastive learning with a novel shuffled group whitening. Generally, contrastive learning pulls distortions of a single sample (i.e., positive samples) close and push negative samples far away, correspondingly facilitating the alignment and uniformity in the feature space. A popular alternative to the “pushing” operation is whitening the feature space, which scatters all the samples for uniformity. Since the whitening and the contrastive learning have large redundancy w.r.t. the uniformity, they are usually used separately and do not easily work together. For the first time, this paper integrates whitening into the contrastive learning scheme and facilitates two benefits. 1) Better uniformity. We find that these two approaches are not totally redundant but actually have some complementarity due to different uniformity mechanism. 2) Better alignment. We randomly divide the feature into multiple groups along the channel axis and perform whitening independently within each group. By shuffling the group division, we derive multiple distortions of a single sample and thus increase the positive sample diversity. Consequently, using multiple positive samples with enhanced diversity further improves contrastive learning due to better alignment. Extensive experiments on seven semantic textual similarity tasks show our method achieves consistent improvement over the contrastive learning baseline and sets new states of the art, e.g., 78.78% (+2.53% based on BERT{pasted macro ‘BA’}) Spearman correlation on STS tasks.

pdf bib
Gloss-Free End-to-End Sign Language Translation
Kezhou Lin | Xiaohan Wang | Linchao Zhu | Ke Sun | Bang Zhang | Yi Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we tackle the problem of sign language translation (SLT) without gloss annotations. Although intermediate representation like gloss has been proven effective, gloss annotations are hard to acquire, especially in large quantities. This limits the domain coverage of translation datasets, thus handicapping real-world applications. To mitigate this problem, we design the Gloss-Free End-to-end sign language translation framework (GloFE). Our method improves the performance of SLT in the gloss-free setting by exploiting the shared underlying semantics of signs and the corresponding spoken translation. Common concepts are extracted from the text and used as a weak form of intermediate representation. The global embedding of these concepts is used as a query for cross-attention to find the corresponding information within the learned visual features. In a contrastive manner, we encourage the similarity of query results between samples containing such concepts and decrease those that do not. We obtained state-of-the-art results on large-scale datasets, including OpenASL and How2Sign.

pdf bib
Text Augmented Spatial Aware Zero-shot Referring Image Segmentation
Yucheng Suo | Linchao Zhu | Yi Yang
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper, we study a challenging task of zero-shot referring image segmentation. This task aims to identify the instance mask that is most related to a referring expression without training on pixel-level annotations. Previous research takes advantage of pre-trained cross-modal models, e.g., CLIP, to align instance-level masks with referring expressions. Yet, CLIP only considers the global-level alignment of image-text pairs, neglecting fine-grained matching between the referring sentence and local image regions. To address this challenge, we introduce a Text Augmented Spatial-aware (TAS) zero-shot referring image segmentation framework that is training-free and robust to various visual encoders. TAS incorporates a mask proposal network for instance-level mask extraction, a text-augmented visual-text matching score for mining the image-text correlation, and a spatial rectifier for mask post-processing. Notably, the text-augmented visual-text matching score leverages a P-score and an N-score in addition to the typical visual-text matching score. The P-score is utilized to close the visual-text domain gap through a surrogate captioning model, where the score is computed between the surrogate model-generated texts and the referring expression. The N-score considers the fine-grained alignment of region-text pairs via negative phrase mining, encouraging the masked image to be repelled from the mined distracting phrases. Extensive experiments are conducted on various datasets, including RefCOCO, RefCOCO+, and RefCOCOg. The proposed method clearly outperforms state-of-the-art zero-shot referring image segmentation methods.