Lingyun Feng


2023

pdf bib
Learning to Predict Task Transferability via Soft Prompt
Lingyun Feng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Fine-tuning pretrained language models on helpful intermediate tasks often greatly improves the performance of target tasks. However, how to efficiently find the source tasks that can successfully transfer still remains under-explored. In this work, we propose to learn an affinity scoring function to predict transferability between tasks. Specifically, we conduct prompt tuning and regard soft prompts as task embeddings that summarize task-specific information. Then we randomly sample task pairs to train an affinity scoring function. The goal is to predict the transfer gain (i.e., affinity) between a task pair, by conditioning on their task embeddings. Once the scoring function is trained, given a novel target task, we use it to predict the most transferable source tasks, without a brute-force search for all possible source-target pairs. Experimental results across 50 tasks show that our method efficiently identifies beneficial tasks for transfer learning.

2021

pdf bib
Wasserstein Selective Transfer Learning for Cross-domain Text Mining
Lingyun Feng | Minghui Qiu | Yaliang Li | Haitao Zheng | Ying Shen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transfer learning (TL) seeks to improve the learning of a data-scarce target domain by using information from source domains. However, the source and target domains usually have different data distributions, which may lead to negative transfer. To alleviate this issue, we propose a Wasserstein Selective Transfer Learning (WSTL) method. Specifically, the proposed method considers a reinforced selector to select helpful data for transfer learning. We further use a Wasserstein-based discriminator to maximize the empirical distance between the selected source data and target data. The TL module is then trained to minimize the estimated Wasserstein distance in an adversarial manner and provides domain invariant features for the reinforced selector. We adopt an evaluation metric based on the performance of the TL module as delayed reward and a Wasserstein-based metric as immediate rewards to guide the reinforced selector learning. Compared with the competing TL approaches, the proposed method selects data samples that are closer to the target domain. It also provides better state features and reward signals that lead to better performance with faster convergence. Extensive experiments on three real-world text mining tasks demonstrate the effectiveness of the proposed method.