Linhao Yu


2024

pdf bib
CMoralEval: A Moral Evaluation Benchmark for Chinese Large Language Models
Linhao Yu | Yongqi Leng | Yufei Huang | Shang Wu | Haixin Liu | Xinmeng Ji | Jiahui Zhao | Jinwang Song | Tingting Cui | Xiaoqing Cheng | Liutao Liutao | Deyi Xiong
Findings of the Association for Computational Linguistics: ACL 2024

What a large language model (LLM) would respond in ethically relevant context? In this paper, we curate a large benchmark CMoralEval for morality evaluation of Chinese LLMs. The data sources of CMoralEval are two-fold: 1) a Chinese TV program discussing Chinese moral norms with stories from the society and 2) a collection of Chinese moral anomies from various newspapers and academic papers on morality. With these sources, we aim to create a moral evaluation dataset characterized by diversity and authenticity. We develop a morality taxonomy and a set of fundamental moral principles that are not only rooted in traditional Chinese culture but also consistent with contemporary societal norms. To facilitate efficient construction and annotation of instances in CMoralEval, we establish a platform with AI-assisted instance generation to streamline the annotation process. These help us curate CMoralEval that encompasses both explicit moral scenarios (14,964 instances) and moral dilemma scenarios (15,424 instances), each with instances from different data sources. We conduct extensive experiments with CMoralEval to examine a variety of Chinese LLMs. Experiment results demonstrate that CMoralEval is a challenging benchmark for Chinese LLMs.

pdf bib
OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety
Chuang Liu | Linhao Yu | Jiaxuan Li | Renren Jin | Yufei Huang | Ling Shi | Junhui Zhang | Xinmeng Ji | Tingting Cui | Liutao Liutao | Jinwang Song | Hongying Zan | Sun Li | Deyi Xiong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

The rapid development of Chinese large language models (LLMs) poses big challenges for efficient LLM evaluation. While current initiatives have introduced new benchmarks or evaluation platforms for assessing Chinese LLMs, many of these focus primarily on capabilities, usually overlooking potential alignment and safety issues. To address this gap, we introduce OpenEval, an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety. For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning. For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs. To evaluate safety, especially anticipated risks (e.g., power-seeking, self-awareness) of advanced LLMs, we include 6 datasets. In addition to these benchmarks, we have implemented a phased public evaluation and benchmark update strategy to ensure that OpenEval is in line with the development of Chinese LLMs or even able to provide cutting-edge benchmark datasets to guide the development of Chinese LLMs. In our first public evaluation, we have tested a range of Chinese LLMs, spanning from 7B to 72B parameters, including both open-source and proprietary models. Evaluation results indicate that while Chinese LLMs have shown impressive performance in certain tasks, more attention should be directed towards broader aspects such as commonsense reasoning, alignment, and safety.

pdf bib
LFED: A Literary Fiction Evaluation Dataset for Large Language Models
Linhao Yu | Qun Liu | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The rapid evolution of large language models (LLMs) has ushered in the need for comprehensive assessments of their performance across various dimensions. In this paper, we propose LFED, a Literary Fiction Evaluation Dataset, which aims to evaluate the capability of LLMs on the long fiction comprehension and reasoning. We collect 95 literary fictions that are either originally written in Chinese or translated into Chinese, covering a wide range of topics across several centuries. We define a question taxonomy with 8 question categories to guide the creation of 1,304 questions. Additionally, we conduct an in-depth analysis to ascertain how specific attributes of literary fictions (e.g., novel types, character numbers, the year of publication) impact LLM performance in evaluations. Through a series of experiments involving various state-of-the-art LLMs, our findings reveal that these models face considerable challenges in effectively addressing questions related to literary fictions, with ChatGPT reaching only 57.08% under the zero-shot setting. The dataset will be publicly available at https://github.com/tjunlp-lab/LFED.git.

2023

pdf bib
CS2W: A Chinese Spoken-to-Written Style Conversion Dataset with Multiple Conversion Types
Zishan Guo | Linhao Yu | Minghui Xu | Renren Jin | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Spoken texts (either manual or automatic transcriptions from automatic speech recognition (ASR)) often contain disfluencies and grammatical errors, which pose tremendous challenges to downstream tasks. Converting spoken into written language is hence desirable. Unfortunately, the availability of datasets for this is limited. To address this issue, we present CS2W, a Chinese Spoken-to-Written style conversion dataset comprising 7,237 spoken sentences extracted from transcribed conversational texts. Four types of conversion problems are covered in CS2W: disfluencies, grammatical errors, ASR transcription errors, and colloquial words. Our annotation convention, data, and code are publicly available at https://github.com/guozishan/CS2W.