Linqing Liu


pdf bib
What the DAAM: Interpreting Stable Diffusion Using Cross Attention
Raphael Tang | Linqing Liu | Akshat Pandey | Zhiying Jiang | Gefei Yang | Karun Kumar | Pontus Stenetorp | Jimmy Lin | Ferhan Ture
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Diffusion models are a milestone in text-to-image generation, but they remain poorly understood, lacking interpretability analyses. In this paper, we perform a text-image attribution analysis on Stable Diffusion, a recently open-sourced model. To produce attribution maps, we upscale and aggregate cross-attention maps in the denoising module, naming our method DAAM. We validate it by testing its segmentation ability on nouns, as well as its generalized attribution quality on all parts of speech, rated by humans. On two generated datasets, we attain a competitive 58.8-64.8 mIoU on noun segmentation and fair to good mean opinion scores (3.4-4.2) on generalized attribution. Then, we apply DAAM to study the role of syntax in the pixel space across head–dependent heat map interaction patterns for ten common dependency relations. We show that, for some relations, the head map consistently subsumes the dependent, while the opposite is true for others. Finally, we study several semantic phenomena, focusing on feature entanglement; we find that the presence of cohyponyms worsens generation quality by 9%, and descriptive adjectives attend too broadly. We are the first to interpret large diffusion models from a visuolinguistic perspective, which enables future research. Our code is at


pdf bib
Challenges in Generalization in Open Domain Question Answering
Linqing Liu | Patrick Lewis | Sebastian Riedel | Pontus Stenetorp
Findings of the Association for Computational Linguistics: NAACL 2022

Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is unclear which aspects of novel questions make them challenging. Drawing upon studies on systematic generalization, we introduce and annotate questions according to three categories that measure different levels and kinds of generalization: training set overlap, compositional generalization (comp-gen), and novel-entity generalization (novel-entity). When evaluating six popular parametric and non-parametric models, we find that for the established Natural Questions and TriviaQA datasets, even the strongest model performance for comp-gen/novel-entity is 13.1/5.4% and 9.6/1.5% lower compared to that for the full test set – indicating the challenge posed by these types of questions. Furthermore, we show that whilst non-parametric models can handle questions containing novel entities relatively well, they struggle with those requiring compositional generalization. Lastly, we find that key question difficulty factors are: cascading errors from the retrieval component, frequency of question pattern, and frequency of the entity.


pdf bib
Controllable Abstractive Dialogue Summarization with Sketch Supervision
Chien-Sheng Wu | Linqing Liu | Wenhao Liu | Pontus Stenetorp | Caiming Xiong
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Patrick Lewis | Yuxiang Wu | Linqing Liu | Pasquale Minervini | Heinrich Küttler | Aleksandra Piktus | Pontus Stenetorp | Sebastian Riedel
Transactions of the Association for Computational Linguistics, Volume 9

Open-domain Question Answering models that directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared with conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models fall short of the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) while retaining high accuracy. Lastly, we demonstrate RePAQ’s strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to “back-off” to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.


pdf bib
Incorporating Contextual and Syntactic Structures Improves Semantic Similarity Modeling
Linqing Liu | Wei Yang | Jinfeng Rao | Raphael Tang | Jimmy Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic similarity modeling is central to many NLP problems such as natural language inference and question answering. Syntactic structures interact closely with semantics in learning compositional representations and alleviating long-range dependency issues. How-ever, such structure priors have not been well exploited in previous work for semantic mod-eling. To examine their effectiveness, we start with the Pairwise Word Interaction Model, one of the best models according to a recent reproducibility study, then introduce components for modeling context and structure using multi-layer BiLSTMs and TreeLSTMs. In addition, we introduce residual connections to the deep convolutional neural network component of the model. Extensive evaluations on eight benchmark datasets show that incorporating structural information contributes to consistent improvements over strong baselines.

pdf bib
Bridging the Gap between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
Jinfeng Rao | Linqing Liu | Yi Tay | Wei Yang | Peng Shi | Jimmy Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered variants of semantic matching, which is to measure the semantic distance between two pieces of short texts. While at a high level both relevance and semantic matching require modeling textual similarity, many existing techniques for one cannot be easily adapted to the other. To bridge this gap, we propose a novel model, HCAN (Hybrid Co-Attention Network), that comprises (1) a hybrid encoder module that includes ConvNet-based and LSTM-based encoders, (2) a relevance matching module that measures soft term matches with importance weighting at multiple granularities, and (3) a semantic matching module with co-attention mechanisms that capture context-aware semantic relatedness. Evaluations on multiple IR and NLP benchmarks demonstrate state-of-the-art effectiveness compared to approaches that do not exploit pretraining on external data. Extensive ablation studies suggest that relevance and semantic matching signals are complementary across many problem settings, regardless of the choice of underlying encoders.


pdf bib
Detecting “Smart” Spammers on Social Network: A Topic Model Approach
Linqing Liu | Yao Lu | Ye Luo | Renxian Zhang | Laurent Itti | Jianwei Lu
Proceedings of the NAACL Student Research Workshop