Linyi Yang


pdf bib
Measuring Consistency in Text-based Financial Forecasting Models
Linyi Yang | Yingpeng Ma | Yue Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Financial forecasting has been an important and active area of machine learning research, as even the most modest advantages in predictive accuracy can be parlayed into significant financial gains. Recent advances in natural language processing (NLP) bring the opportunity to leverage textual data, such as earnings reports of publicly traded companies, to predict the return rate for an asset. However, when dealing with such a sensitive task, the consistency of models – their invariance under meaning-preserving alternations in input – is a crucial property for building user trust. Despite this, current methods for financial forecasting do not take consistency into consideration. To address this issue, we propose FinTrust, an evaluation tool that assesses logical consistency in financial text. Using FinTrust, we show that the consistency of state-of-the-art NLP models for financial forecasting is poor. Our analysis of the performance degradation caused by meaning-preserving alternations suggests that current text-based methods are not suitable for robustly predicting market information.

pdf bib
Learning to Generalize for Cross-domain QA
Yingjie Niu | Linyi Yang | Ruihai Dong | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2023

There have been growing concerns regarding the out-of-domain generalization ability of natural language processing (NLP) models, particularly in question-answering (QA) tasks. Current synthesized data augmentation methods for QA are hampered by increased training costs. To address this issue, we propose a novel approach that combines prompting methods and linear probing with fine-tuning strategy, which does not entail additional cost. Our method has been theoretically and empirically shown to be effective in enhancing the generalization ability of both generative and discriminative models. Our approach outperforms state-of-the-art baselines, with an average increase in F1 score of 4.5%-7.9%. Furthermore, our method can be easily integrated into any pre-trained models and offers a promising solution to the under-explored cross-domain QA task.

pdf bib
Exploiting Rich Textual User-Product Context for Improving Personalized Sentiment Analysis
Chenyang Lyu | Linyi Yang | Yue Zhang | Yvette Graham | Jennifer Foster
Findings of the Association for Computational Linguistics: ACL 2023

User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architectureor do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product in initializing representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on the IMDb, Yelp-2013 and Yelp-2014 English benchmarks with BERT, SpanBERT and Longformer pretrained language models show that our approach substantially outperforms previous state-of-the-art.

pdf bib
GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-Distribution Generalization Perspective
Linyi Yang | Shuibai Zhang | Libo Qin | Yafu Li | Yidong Wang | Hanmeng Liu | Jindong Wang | Xing Xie | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.

pdf bib
Out-of-Distribution Generalization in Natural Language Processing: Past, Present, and Future
Linyi Yang | Yaoxian Song | Xuan Ren | Chenyang Lyu | Yidong Wang | Jingming Zhuo | Lingqiao Liu | Jindong Wang | Jennifer Foster | Yue Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Machine learning (ML) systems in natural language processing (NLP) face significant challenges in generalizing to out-of-distribution (OOD) data, where the test distribution differs from the training data distribution. This poses important questions about the robustness of NLP models and their high accuracy, which may be artificially inflated due to their underlying sensitivity to systematic biases. Despite these challenges, there is a lack of comprehensive surveys on the generalization challenge from an OOD perspective in natural language understanding. Therefore, this paper aims to fill this gap by presenting the first comprehensive review of recent progress, methods, and evaluations on this topic. We further discuss the challenges involved and potential future research directions. By providing convenient access to existing work, we hope this survey will encourage future research in this area.


pdf bib
Human-in-the-loop Robotic Grasping Using BERT Scene Representation
Yaoxian Song | Penglei Sun | Pengfei Fang | Linyi Yang | Yanghua Xiao | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Current NLP techniques have been greatly applied in different domains. In this paper, we propose a human-in-the-loop framework for robotic grasping in cluttered scenes, investigating a language interface to the grasping process, which allows the user to intervene by natural language commands. This framework is constructed on a state-of-the-art grasping baseline, where we substitute a scene-graph representation with a text representation of the scene using BERT. Experiments on both simulation and physical robot show that the proposed method outperforms conventional object-agnostic and scene-graph based methods in the literature. In addition, we find that with human intervention, performance can be significantly improved. Our dataset and code are available on our project website

pdf bib
FactMix: Using a Few Labeled In-domain Examples to Generalize to Cross-domain Named Entity Recognition
Linyi Yang | Lifan Yuan | Leyang Cui | Wenyang Gao | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Few-shot Named Entity Recognition (NER) is imperative for entity tagging in limited resource domains and thus received proper attention in recent years. Existing approaches for few-shot NER are evaluated mainly under in-domain settings. In contrast, little is known about how these inherently faithful models perform in cross-domain NER using a few labeled in-domain examples. This paper proposes a two-step rationale-centric data augmentation method to improve the model’s generalization ability. Results on several datasets show that our model-agnostic method significantly improves the performance of cross-domain NER tasks compared to previous state-of-the-art methods compared to the counterfactual data augmentation and prompt-tuning methods.

pdf bib
A Rationale-Centric Framework for Human-in-the-loop Machine Learning
Jinghui Lu | Linyi Yang | Brian Namee | Yue Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a novel rational-centric framework with human-in-the-loop – Rationales-centric Double-robustness Learning (RDL) – to boost model out-of-distribution performance in few-shot learning scenarios. By using static semi-factual generation and dynamic human-intervened correction, RDL, acting like a sensible “inductive bias”, exploits rationales (i.e. phrases that cause the prediction), human interventions and semi-factual augmentations to decouple spurious associations and bias models towards generally applicable underlying distributions, which enables fast and accurate generalisation. Experimental results show that RDL leads to significant prediction benefits on both in-distribution and out-of-distribution tests, especially for few-shot learning scenarios, compared to many state-of-the-art benchmarks. We also perform extensive ablation studies to support in-depth analyses of each component in our framework.


pdf bib
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment Analysis
Linyi Yang | Jiazheng Li | Padraig Cunningham | Yue Zhang | Barry Smyth | Ruihai Dong
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist in their training and test data. Such issues come to be manifest in performance problems when faced with out-of-distribution data in the field. One recent solution has been to use counterfactually augmented datasets in order to reduce any reliance on spurious patterns that may exist in the original data. Producing high-quality augmented data can be costly and time-consuming as it usually needs to involve human feedback and crowdsourcing efforts. In this work, we propose an alternative by describing and evaluating an approach to automatically generating counterfactual data for the purpose of data augmentation and explanation. A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance when compared to models training on the original data and even when compared to models trained with the benefit of human-generated augmented data.


pdf bib
Generating Plausible Counterfactual Explanations for Deep Transformers in Financial Text Classification
Linyi Yang | Eoin Kenny | Tin Lok James Ng | Yi Yang | Barry Smyth | Ruihai Dong
Proceedings of the 28th International Conference on Computational Linguistics

Corporate mergers and acquisitions (M&A) account for billions of dollars of investment globally every year and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust/accurate model, but be able to generate useful explanations to garner a user’s trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a user’s trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.


pdf bib
Leveraging BERT to Improve the FEARS Index for Stock Forecasting
Linyi Yang | Ruihai Dong | Tin Lok James Ng | Yang Xu
Proceedings of the First Workshop on Financial Technology and Natural Language Processing