Lisa Bylinina


2022

pdf bib
Transformers in the loop: Polarity in neural models of language
Lisa Bylinina | Alexey Tikhonov
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Representation of linguistic phenomena in computational language models is typically assessed against the predictions of existing linguistic theories of these phenomena. Using the notion of polarity as a case study, we show that this is not always the most adequate set-up. We probe polarity via so-called ‘negative polarity items’ (in particular, English ‘any’) in two pre-trained Transformer-based models (BERT and GPT-2). We show that – at least for polarity – metrics derived from language models are more consistent with data from psycholinguistic experiments than linguistic theory predictions. Establishing this allows us to more adequately evaluate the performance of language models and also to use language models to discover new insights into natural language grammar beyond existing linguistic theories. This work contributes to establishing closer ties between psycholinguistic experiments and experiments with language models.
Search
Co-authors
Venues