Domain adaptation is crucial in the clinical domain since the performance of a model trained on one domain (source) degrades seriously when applied to another domain (target). However, conventional domain adaptation methods often cannot be applied due to data sharing restrictions on source data. Source-Free Domain Adaptation (SFDA) addresses this issue by only utilizing a source model and unlabeled target data to adapt to the target domain. In SFDA, self-training is the most widely applied method involving retraining models with target data using predictions from the source model as pseudo-labels. Nevertheless, this approach is prone to contain substantial numbers of errors in pseudo-labeling and might limit model performance in the target domain. In this paper, we propose a Source-Free Prototype-based Self-training (SFPS) aiming to improve the performance of self-training. SFPS generates prototypes without accessing source data and utilizes them for prototypical learning, namely prototype-based pseudo-labeling and contrastive learning. Also, we compare entropy-based, centroid-based, and class-weights-based prototype generation methods to identify the most effective formulation of the proposed method. Experimental results across various datasets demonstrate the effectiveness of the proposed method, consistently outperforming vanilla self-training. The comparison of various prototype-generation methods identifies the most reliable generation method that improves the source model persistently. Additionally, our analysis illustrates SFPS can successfully alleviate errors in pseudo-labeling.
An adverse drug effect (ADE) is any harmful event resulting from medical drug treatment. Despite their importance, ADEs are often under-reported in official channels. Some research has therefore turned to detecting discussions of ADEs in social media. Impressive results have been achieved in various attempts to detect ADEs. In a high-stakes domain such as medicine, however, an in-depth evaluation of a model’s abilities is crucial. We address the issue of thorough performance evaluation in detecting ADEs with hand-crafted templates for four capabilities, temporal order, negation, sentiment and beneficial effect. We find that models with similar performance on held-out test sets have varying results on these capabilities.
Since medical text cannot be shared easily due to privacy concerns, synthetic data bears much potential for natural language processing applications. In the context of social media and user-generated messages about drug intake and adverse drug effects, this work presents different methods to examine the authenticity of synthetic text. We conclude that the generated tweets are untraceable and show enough authenticity from the medical point of view to be used as a replacement for a real Twitter corpus. However, original data might still be the preferred choice as they contain much more diversity.
User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages.
The NLI4CT task at SemEval-2024 emphasizes the development of robust models for Natural Language Inference on Clinical Trial Reports (CTRs) using large language models (LLMs). This edition introduces interventions specifically targeting the numerical, vocabulary, and semantic aspects of CTRs. Our proposed system harnesses the capabilities of the state-of-the-art Mistral model (Jiang et al., 2023), complemented by an auxiliary model, to focus on the intricate input space of the NLI4CT dataset. Through the incorporation of numerical and acronym-based perturbations to the data, we train a robust system capable of handling both semantic-altering and numerical contradiction interventions. Our analysis on the dataset sheds light on the challenging sections of the CTRs for reasoning.
This paper provides an overview of Task 2 from the Social Media Mining for Health 2024 shared task (#SMM4H 2024), which focused on Named Entity Recognition (NER, Subtask 2a) and the joint task of NER and Relation Extraction (RE, Subtask 2b) for detecting adverse drug reactions (ADRs) in German, Japanese, and French texts written by patients. Participants were challenged with a few-shot learning scenario, necessitating models that can effectively generalize from limited annotated examples. Despite the diverse strategies employed by the participants, the overall performance across submissions from three teams highlighted significant challenges. The results underscored the complexity of extracting entities and relations in multi-lingual contexts, especially from the noisy and informal nature of user-generated content. Further research is required to develop robust systems capable of accurately identifying and associating ADR-related information in low-resource and multilingual settings.
For the past nine years, the Social Media Mining for Health Applications (#SMM4H) shared tasks have promoted community-driven development and evaluation of advanced natural language processing systems to detect, extract, and normalize health-related information in publicly available user-generated content. This year, #SMM4H included seven shared tasks in English, Japanese, German, French, and Spanish from Twitter, Reddit, and health forums. A total of 84 teams from 22 countries registered for #SMM4H, and 45 teams participated in at least one task. This represents a growth of 180% and 160% in registration and participation, respectively, compared to the last iteration. This paper provides an overview of the tasks and participating systems. The data sets remain available upon request, and new systems can be evaluated through the post-evaluation phase on CodaLab.
In this work, we present the first corpus for German Adverse Drug Reaction (ADR) detection in patient-generated content. The data consists of 4,169 binary annotated documents from a German patient forum, where users talk about health issues and get advice from medical doctors. As is common in social media data in this domain, the class labels of the corpus are very imbalanced. This and a high topic imbalance make it a very challenging dataset, since often, the same symptom can have several causes and is not always related to a medication intake. We aim to encourage further multi-lingual efforts in the domain of ADR detection and provide preliminary experiments for binary classification using different methods of zero- and few-shot learning based on a multi-lingual model. When fine-tuning XLM-RoBERTa first on English patient forum data and then on the new German data, we achieve an F1-score of 37.52 for the positive class. We make the dataset and models publicly available for the community.
Distributed word vector spaces are considered hard to interpret which hinders the understanding of natural language processing (NLP) models. In this work, we introduce a new method to interpret arbitrary samples from a word vector space. To this end, we train a neural model to conceptualize word vectors, which means that it activates higher order concepts it recognizes in a given vector. Contrary to prior approaches, our model operates in the original vector space and is capable of learning non-linear relations between word vectors and concepts. Furthermore, we show that it produces considerably less entropic concept activation profiles than the popular cosine similarity.