Liu Rui

Also published as:


2024

pdf bib
基于蒙古文文本语义辅助的噪声鲁棒蒙古语语音情感识别方法研究(Research on Noise-Robust Mongolian Speech Emotion Recognition Methods Based on Mongolian Text Semantics)
Liu Huan (刘欢) | Liang Kailin (梁凯麟) | Zuo Haolin (左昊麟) | Liu Rui (刘瑞)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“噪声环境下语音情感识别(Speech Emotion Recognition,SER)旨在从带有背景噪声的语音信号中挖掘情感特征并自动预测说话人的情感状态。尽管这项技术在英语、汉语等语言方面取得了迅速的进展,但对于像蒙古语这样的小语种,在噪声环境下的语音情感识别研究仍处于起步阶段,缺乏相关数据集和方法的研究。为了推动蒙古语语音情感识别的发展,本研究首先构建了一个单说话人语音情感识别数据集。之后为了实现噪声环境下准确的蒙古语语音情感识别,我们提出了一种基于文本-语音双模态的带噪蒙古语语音情感识别基线模型 MonSER。文本信息为噪声语音信号提供额外的语义信息。具体来说,我们的模型首先对带噪语音信号进行频谱特征提取,之后使用多语种预训练模型 XLMBert 对语音信号对应的蒙古文文本信息进行编码。随后将上述提取的双模态信息进行融合,并输入分类器进行情感类别的预测。我们利用该数据集进行模型训练并测试模型的有效性。实验结果表明,我们的双模态模型在多种噪声环境下的蒙古语语音情感识别准确率明显优于只以语音为输入的单模态语音情感识别系统。同时,为了模拟实际场景中文本可能缺失的情况,我们提出了两种文本 mask 策略,该文本实验也进一步验证了文本语音双模态的有效性。”

2021

pdf bib
Using Query Expansion in Manifold Ranking for Query-Oriented Multi-Document Summarization
Jia Quanye | Liu Rui | Lin Jianying
Proceedings of the 20th Chinese National Conference on Computational Linguistics

Manifold ranking has been successfully applied in query-oriented multi-document summariza-tion. It not only makes use of the relationships among the sentences but also the relationships between the given query and the sentences. However the information of original query is often insufficient. So we present a query expansion method which is combined in the manifold rank-ing to resolve this problem. Our method not only utilizes the information of the query term itselfand the knowledge base WordNet to expand it by synonyms but also uses the information of the document set itself to expand the query in various ways (mean expansion variance expansionand TextRank expansion). Compared with the previous query expansion methods our methodcombines multiple query expansion methods to better represent query information and at the same time it makes a useful attempt on manifold ranking. In addition we use the degree of wordoverlap and the proximity between words to calculate the similarity between sentences. We per-formed experiments on the datasets of DUC 2006 and DUC2007 and the evaluation results showthat the proposed query expansion method can significantly improve the system performance andmake our system comparable to the state-of-the-art systems.