Livio Soares
2023
Evaluating and Modeling Attribution for Cross-Lingual Question Answering
Benjamin Muller
|
John Wieting
|
Jonathan Clark
|
Tom Kwiatkowski
|
Sebastian Ruder
|
Livio Soares
|
Roee Aharoni
|
Jonathan Herzig
|
Xinyi Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems — yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. With these models, we improve the attribution level of a cross-lingual QA system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.
NAIL: Lexical Retrieval Indices with Efficient Non-Autoregressive Decoders
Livio Soares
|
Daniel Gillick
|
Jeremy Cole
|
Tom Kwiatkowski
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Neural document rerankers are extremely effective in terms of accuracy. However, the best models require dedicated hardware for serving, which is costly and often not feasible. To avoid this servingtime requirement, we present a method of capturing up to 86% of the gains of a Transformer cross-attention model with a lexicalized scoring function that only requires 10-6% of the Transformer’s FLOPs per document and can be served using commodity CPUs. When combined with a BM25 retriever, this approach matches the quality of a state-of-the art dual encoder retriever, that still requires an accelerator for query encoding. We introduce nail (Non-Autoregressive Indexing with Language models) as a model architecture that is compatible with recent encoder-decoder and decoder-only large language models, such as T5, GPT-3 and PaLM. This model architecture can leverage existing pre-trained checkpoints and can be fine-tuned for efficiently constructing document representations that do not require neural processing of queries.
1-PAGER: One Pass Answer Generation and Evidence Retrieval
Palak Jain
|
Livio Soares
|
Tom Kwiatkowski
Findings of the Association for Computational Linguistics: EMNLP 2023
We present 1-Pager the first system that answers a question and retrieves evidence using a single Transformer-based model and decoding process. 1-Pager incrementally partitions the retrieval corpus using constrained decoding to select a document and answer string, and we show that this is competitive with comparable retrieve-and-read alternatives according to both retrieval and answer accuracy metrics. 1-Pager also outperforms the equivalent ‘closed-book’ question answering model, by grounding predictions in an evidence corpus. While 1-Pager is not yet on-par with more expensive systems that read many more documents before generating an answer, we argue that it provides an important step toward attributed generation by folding retrieval into the sequence-to-sequence paradigm that is currently dominant in NLP. We also show that the search paths used to partition the corpus are easy to read and understand, paving a way forward for interpretable neural retrieval.
Search
Fix data
Co-authors
- Tom Kwiatkowski 3
- Roee Aharoni 1
- Jonathan H. Clark 1
- Jeremy Cole 1
- Dan Gillick 1
- show all...