Liwei Wang


pdf bib
JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs
Pei Ke | Haozhe Ji | Yu Ran | Xin Cui | Liwei Wang | Linfeng Song | Xiaoyan Zhu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
DAGN: Discourse-Aware Graph Network for Logical Reasoning
Yinya Huang | Meng Fang | Yu Cao | Liwei Wang | Xiaodan Liang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent QA with logical reasoning questions requires passage-level relations among the sentences. However, current approaches still focus on sentence-level relations interacting among tokens. In this work, we explore aggregating passage-level clues for solving logical reasoning QA by using discourse-based information. We propose a discourse-aware graph network (DAGN) that reasons relying on the discourse structure of the texts. The model encodes discourse information as a graph with elementary discourse units (EDUs) and discourse relations, and learns the discourse-aware features via a graph network for downstream QA tasks. Experiments are conducted on two logical reasoning QA datasets, ReClor and LogiQA, and our proposed DAGN achieves competitive results. The source code is available at

pdf bib
RAST: Domain-Robust Dialogue Rewriting as Sequence Tagging
Jie Hao | Linfeng Song | Liwei Wang | Kun Xu | Zhaopeng Tu | Dong Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The task of dialogue rewriting aims to reconstruct the latest dialogue utterance by copying the missing content from the dialogue context. Until now, the existing models for this task suffer from the robustness issue, i.e., performances drop dramatically when testing on a different dataset. We address this robustness issue by proposing a novel sequence-tagging-based model so that the search space is significantly reduced, yet the core of this task is still well covered. As a common issue of most tagging models for text generation, the model’s outputs may lack fluency. To alleviate this issue, we inject the loss signal from BLEU or GPT-2 under a REINFORCE framework. Experiments show huge improvements of our model over the current state-of-the-art systems when transferring to another dataset.


pdf bib
Semi-Supervised Learning for Video Captioning
Ke Lin | Zhuoxin Gan | Liwei Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Deep neural networks have made great success on video captioning in supervised learning setting. However, annotating videos with descriptions is very expensive and time-consuming. If the video captioning algorithm can benefit from a large number of unlabeled videos, the cost of annotation can be reduced. In the proposed study, we make the first attempt to train the video captioning model on labeled data and unlabeled data jointly, in a semi-supervised learning manner. For labeled data, we train them with the traditional cross-entropy loss. For unlabeled data, we leverage a self-critical policy gradient method with the difference between the scores obtained by Monte-Carlo sampling and greedy decoding as the reward function, while the scores are the negative K-L divergence between output distributions of original video data and augmented video data. The final loss is the weighted sum of losses obtained by labeled data and unlabeled data. Experiments conducted on VATEX, MSR-VTT and MSVD dataset demonstrate that the introduction of unlabeled data can improve the performance of the video captioning model. The proposed semi-supervised learning algorithm also outperforms several state-of-the-art semi-supervised learning approaches.

pdf bib
MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning
Jie Lei | Liwei Wang | Yelong Shen | Dong Yu | Tamara Berg | Mohit Bansal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating multi-sentence descriptions for videos is one of the most challenging captioning tasks due to its high requirements for not only visual relevance but also discourse-based coherence across the sentences in the paragraph. Towards this goal, we propose a new approach called Memory-Augmented Recurrent Transformer (MART), which uses a memory module to augment the transformer architecture. The memory module generates a highly summarized memory state from the video segments and the sentence history so as to help better prediction of the next sentence (w.r.t. coreference and repetition aspects), thus encouraging coherent paragraph generation. Extensive experiments, human evaluations, and qualitative analyses on two popular datasets ActivityNet Captions and YouCookII show that MART generates more coherent and less repetitive paragraph captions than baseline methods, while maintaining relevance to the input video events.


pdf bib
Attention Neural Model for Temporal Relation Extraction
Sijia Liu | Liwei Wang | Vipin Chaudhary | Hongfang Liu
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Neural network models have shown promise in the temporal relation extraction task. In this paper, we present the attention based neural network model to extract the containment relations within sentences from clinical narratives. The attention mechanism used on top of GRU model outperforms the existing state-of-the-art neural network models on THYME corpus in intra-sentence temporal relation extraction.

pdf bib
Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network
Kun Xu | Liwei Wang | Mo Yu | Yansong Feng | Yan Song | Zhiguo Wang | Dong Yu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Previous cross-lingual knowledge graph (KG) alignment studies rely on entity embeddings derived only from monolingual KG structural information, which may fail at matching entities that have different facts in two KGs. In this paper, we introduce the topic entity graph, a local sub-graph of an entity, to represent entities with their contextual information in KG. From this view, the KB-alignment task can be formulated as a graph matching problem; and we further propose a graph-attention based solution, which first matches all entities in two topic entity graphs, and then jointly model the local matching information to derive a graph-level matching vector. Experiments show that our model outperforms previous state-of-the-art methods by a large margin.

pdf bib
Hint-Based Training for Non-Autoregressive Machine Translation
Zhuohan Li | Zi Lin | Di He | Fei Tian | Tao Qin | Liwei Wang | Tie-Yan Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Due to the unparallelizable nature of the autoregressive factorization, AutoRegressive Translation (ART) models have to generate tokens sequentially during decoding and thus suffer from high inference latency. Non-AutoRegressive Translation (NART) models were proposed to reduce the inference time, but could only achieve inferior translation accuracy. In this paper, we proposed a novel approach to leveraging the hints from hidden states and word alignments to help the training of NART models. The results achieve significant improvement over previous NART models for the WMT14 En-De and De-En datasets and are even comparable to a strong LSTM-based ART baseline but one order of magnitude faster in inference.