Lixing Zhu


pdf bib
Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude Detection in Social Media
Lixing Zhu | Zheng Fang | Gabriele Pergola | Robert Procter | Yulan He
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.


pdf bib
Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection
Lixing Zhu | Gabriele Pergola | Lin Gui | Deyu Zhou | Yulan He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Emotion detection in dialogues is challenging as it often requires the identification of thematic topics underlying a conversation, the relevant commonsense knowledge, and the intricate transition patterns between the affective states. In this paper, we propose a Topic-Driven Knowledge-Aware Transformer to handle the challenges above. We firstly design a topic-augmented language model (LM) with an additional layer specialized for topic detection. The topic-augmented LM is then combined with commonsense statements derived from a knowledge base based on the dialogue contextual information. Finally, a transformer-based encoder-decoder architecture fuses the topical and commonsense information, and performs the emotion label sequence prediction. The model has been experimented on four datasets in dialogue emotion detection, demonstrating its superiority empirically over the existing state-of-the-art approaches. Quantitative and qualitative results show that the model can discover topics which help in distinguishing emotion categories.


pdf bib
A Neural Generative Model for Joint Learning Topics and Topic-Specific Word Embeddings
Lixing Zhu | Yulan He | Deyu Zhou
Transactions of the Association for Computational Linguistics, Volume 8

We propose a novel generative model to explore both local and global context for joint learning topics and topic-specific word embeddings. In particular, we assume that global latent topics are shared across documents, a word is generated by a hidden semantic vector encoding its contextual semantic meaning, and its context words are generated conditional on both the hidden semantic vector and global latent topics. Topics are trained jointly with the word embeddings. The trained model maps words to topic-dependent embeddings, which naturally addresses the issue of word polysemy. Experimental results show that the proposed model outperforms the word-level embedding methods in both word similarity evaluation and word sense disambiguation. Furthermore, the model also extracts more coherent topics compared with existing neural topic models or other models for joint learning of topics and word embeddings. Finally, the model can be easily integrated with existing deep contextualized word embedding learning methods to further improve the performance of downstream tasks such as sentiment classification.

pdf bib
Neural Temporal Opinion Modelling for Opinion Prediction on Twitter
Lixing Zhu | Yulan He | Deyu Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Opinion prediction on Twitter is challenging due to the transient nature of tweet content and neighbourhood context. In this paper, we model users’ tweet posting behaviour as a temporal point process to jointly predict the posting time and the stance label of the next tweet given a user’s historical tweet sequence and tweets posted by their neighbours. We design a topic-driven attention mechanism to capture the dynamic topic shifts in the neighbourhood context. Experimental results show that the proposed model predicts both the posting time and the stance labels of future tweets more accurately compared to a number of competitive baselines.