Long Chen


pdf bib
Rethinking Multi-Modal Alignment in Multi-Choice VideoQA from Feature and Sample Perspectives
Shaoning Xiao | Long Chen | Kaifeng Gao | Zhao Wang | Yi Yang | Zhimeng Zhang | Jun Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning about causal and temporal event relations in videos is a new destination of Video Question Answering (VideoQA). The major stumbling block to achieve this purpose is the semantic gap between language and video since they are at different levels of abstraction. Existing efforts mainly focus on designing sophisticated architectures while utilizing frame- or object-level visual representations. In this paper, we reconsider the multi-modal alignment problem in VideoQA from feature and sample perspectives to achieve better performance. From the view of feature, we break down the video into trajectories and first leverage trajectory feature in VideoQA to enhance the alignment between two modalities. Moreover, we adopt a heterogeneous graph architecture and design a hierarchical framework to align both trajectory-level and frame-level visual feature with language feature. In addition, we found that VideoQA models are largely dependent on languagepriors and always neglect visual-language interactions. Thus, two effective yet portable training augmentation strategies are designed to strengthen the cross-modal correspondence ability of our model from the view of sample. Extensive results show that our method outperforms all the state-of the-art models on the challenging NExT-QA benchmark.

pdf bib
Weakly-Supervised Temporal Article Grounding
Long Chen | Yulei Niu | Brian Chen | Xudong Lin | Guangxing Han | Christopher Thomas | Hammad Ayyubi | Heng Ji | Shih-Fu Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Given a long untrimmed video and natural language queries, video grounding (VG) aims to temporally localize the semantically-aligned video segments. Almost all existing VG work holds two simple but unrealistic assumptions: 1) All query sentences can be grounded in the corresponding video. 2) All query sentences for the same video are always at the same semantic scale. Unfortunately, both assumptions make today’s VG models fail to work in practice. For example, in real-world multimodal assets (eg, news articles), most of the sentences in the article can not be grounded in their affiliated videos, and they typically have rich hierarchical relations (ie, at different semantic scales). To this end, we propose a new challenging grounding task: Weakly-Supervised temporal Article Grounding (WSAG). Specifically, given an article and a relevant video, WSAG aims to localize all “groundable” sentences to the video, and these sentences are possibly at different semantic scales. Accordingly, we collect the first WSAG dataset to facilitate this task: YouwikiHow, which borrows the inherent multi-scale descriptions in wikiHow articles and plentiful YouTube videos. In addition, we propose a simple but effective method DualMIL for WSAG, which consists of a two-level MIL loss and a single-/cross- sentence constraint loss. These training objectives are carefully designed for these relaxed assumptions. Extensive ablations have verified the effectiveness of DualMIL.


pdf bib
基于中文信息与越南语句法指导的越南语事件检测(Vietnamese event detection based on Chinese information and Vietnamese syntax guidance)
Long Chen (陈龙) | Junjun Guo (郭军军) | Yafei Zhang (张亚飞) | Chengxiang Gao (高盛祥) | Zhengtao Yu (余正涛)
Proceedings of the 20th Chinese National Conference on Computational Linguistics


pdf bib
Natural Language Video Localization with Learnable Moment Proposals
Shaoning Xiao | Long Chen | Jian Shao | Yueting Zhuang | Jun Xiao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Given an untrimmed video and a natural language query, Natural Language Video Localization (NLVL) aims to identify the video moment described by query. To address this task, existing methods can be roughly grouped into two groups: 1) propose-and-rank models first define a set of hand-designed moment candidates and then find out the best-matching one. 2) proposal-free models directly predict two temporal boundaries of the referential moment from frames. Currently, almost all the propose-and-rank methods have inferior performance than proposal-free counterparts. In this paper, we argue that the performance of propose-and-rank models are underestimated due to the predefined manners: 1) Hand-designed rules are hard to guarantee the complete coverage of targeted segments. 2) Densely sampled candidate moments cause redundant computation and degrade the performance of ranking process. To this end, we propose a novel model termed LPNet (Learnable Proposal Network for NLVL) with a fixed set of learnable moment proposals. The position and length of these proposals are dynamically adjusted during training process. Moreover, a boundary-aware loss has been proposed to leverage frame-level information and further improve performance. Extensive ablations on two challenging NLVL benchmarks have demonstrated the effectiveness of LPNet over existing state-of-the-art methods.

pdf bib
On Pursuit of Designing Multi-modal Transformer for Video Grounding
Meng Cao | Long Chen | Mike Zheng Shou | Can Zhang | Yuexian Zou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Video grounding aims to localize the temporal segment corresponding to a sentence query from an untrimmed video. Almost all existing video grounding methods fall into two frameworks: 1) Top-down model: It predefines a set of segment candidates and then conducts segment classification and regression. 2) Bottom-up model: It directly predicts frame-wise probabilities of the referential segment boundaries. However, all these methods are not end-to-end, i.e., they always rely on some time-consuming post-processing steps to refine predictions. To this end, we reformulate video grounding as a set prediction task and propose a novel end-to-end multi-modal Transformer model, dubbed as GTR. Specifically, GTR has two encoders for video and language encoding, and a cross-modal decoder for grounding prediction. To facilitate the end-to-end training, we use a Cubic Embedding layer to transform the raw videos into a set of visual tokens. To better fuse these two modalities in the decoder, we design a new Multi-head Cross-Modal Attention. The whole GTR is optimized via a Many-to-One matching loss. Furthermore, we conduct comprehensive studies to investigate different model design choices. Extensive results on three benchmarks have validated the superiority of GTR. All three typical GTR variants achieve record-breaking performance on all datasets and metrics, with several times faster inference speed.


pdf bib
Distinguish Confusing Law Articles for Legal Judgment Prediction
Nuo Xu | Pinghui Wang | Long Chen | Li Pan | Xiaoyan Wang | Junzhou Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Legal Judgement Prediction (LJP) is the task of automatically predicting a law case’s judgment results given a text describing the case’s facts, which has great prospects in judicial assistance systems and handy services for the public. In practice, confusing charges are often presented, because law cases applicable to similar law articles are easily misjudged. To address this issue, existing work relies heavily on domain experts, which hinders its application in different law systems. In this paper, we present an end-to-end model, LADAN, to solve the task of LJP. To distinguish confusing charges, we propose a novel graph neural network, GDL, to automatically learn subtle differences between confusing law articles, and also design a novel attention mechanism that fully exploits the learned differences to attentively extract effective discriminative features from fact descriptions. Experiments conducted on real-world datasets demonstrate the superiority of our LADAN.


pdf bib
Exploiting Entity BIO Tag Embeddings and Multi-task Learning for Relation Extraction with Imbalanced Data
Wei Ye | Bo Li | Rui Xie | Zhonghao Sheng | Long Chen | Shikun Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In practical scenario, relation extraction needs to first identify entity pairs that have relation and then assign a correct relation class. However, the number of non-relation entity pairs in context (negative instances) usually far exceeds the others (positive instances), which negatively affects a model’s performance. To mitigate this problem, we propose a multi-task architecture which jointly trains a model to perform relation identification with cross-entropy loss and relation classification with ranking loss. Meanwhile, we observe that a sentence may have multiple entities and relation mentions, and the patterns in which the entities appear in a sentence may contain useful semantic information that can be utilized to distinguish between positive and negative instances. Thus we further incorporate the embeddings of character-wise/word-wise BIO tag from the named entity recognition task into character/word embeddings to enrich the input representation. Experiment results show that our proposed approach can significantly improve the performance of a baseline model with more than 10% absolute increase in F1-score, and outperform the state-of-the-art models on ACE 2005 Chinese and English corpus. Moreover, BIO tag embeddings are particularly effective and can be used to improve other models as well.

pdf bib
DEBUG: A Dense Bottom-Up Grounding Approach for Natural Language Video Localization
Chujie Lu | Long Chen | Chilie Tan | Xiaolin Li | Jun Xiao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper, we focus on natural language video localization: localizing (ie, grounding) a natural language description in a long and untrimmed video sequence. All currently published models for addressing this problem can be categorized into two types: (i) top-down approach: it does classification and regression for a set of pre-cut video segment candidates; (ii) bottom-up approach: it directly predicts probabilities for each video frame as the temporal boundaries (ie, start and end time point). However, both two approaches suffer several limitations: the former is computation-intensive for densely placed candidates, while the latter has trailed the performance of the top-down counterpart thus far. To this end, we propose a novel dense bottom-up framework: DEnse Bottom-Up Grounding (DEBUG). DEBUG regards all frames falling in the ground truth segment as foreground, and each foreground frame regresses the unique distances from its location to bi-directional ground truth boundaries. Extensive experiments on three challenging benchmarks (TACoS, Charades-STA, and ActivityNet Captions) show that DEBUG is able to match the speed of bottom-up models while surpassing the performance of the state-of-the-art top-down models.


pdf bib
Learning Bilingual Sentiment Word Embeddings for Cross-language Sentiment Classification
HuiWei Zhou | Long Chen | Fulin Shi | Degen Huang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)


pdf bib
Using Collocations and K-means Clustering to Improve the N-pos Model for Japanese IME
Long Chen | Xianchao Wu | Jingzhou He
Proceedings of the Second Workshop on Advances in Text Input Methods