Longtao Huang


2024

pdf bib
Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning
Qizhou Chen | Taolin Zhang | Xiaofeng He | Dongyang Li | Chengyu Wang | Longtao Huang | Hui Xue’
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM’s input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.

pdf bib
DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models
Taolin Zhang | Qizhou Chen | Dongyang Li | Chengyu Wang | Xiaofeng He | Longtao Huang | Hui Xue’ | Jun Huang
Findings of the Association for Computational Linguistics: ACL 2024

Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples.Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named DAFSet, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios.

pdf bib
On the Role of Long-tail Knowledge in Retrieval Augmented Large Language Models
Dongyang Li | Junbing Yan | Taolin Zhang | Chengyu Wang | Xiaofeng He | Longtao Huang | Hui Xue’ | Jun Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Retrieval augmented generation (RAG) exhibits outstanding performance in promoting the knowledge capabilities of large language models (LLMs) with retrieved documents related to user queries. However, RAG only focuses on improving the response quality of LLMs via enhancing queries indiscriminately with retrieved information, paying little attention to what type of knowledge LLMs really need to answer original queries more accurately. In this paper, we suggest that long-tail knowledge is crucial for RAG as LLMs have already remembered common world knowledge during large-scale pre-training. Based on our observation, we propose a simple but effective long-tail knowledge detection method for LLMs. Specifically, the novel Generative Expected Calibration Error (GECE) metric is derived to measure the “long-tailness” of knowledge based on both statistics and semantics. Hence, we retrieve relevant documents and infuse them into the model for patching knowledge loopholes only when the input query relates to long-tail knowledge. Experiments show that, compared to existing RAG pipelines, our method achieves over 4x speedup in average inference time and consistent performance improvement in downstream tasks.

pdf bib
KEHRL: Learning Knowledge-Enhanced Language Representations with Hierarchical Reinforcement Learning
Dongyang Li | Taolin Zhang | Longtao Huang | Chengyu Wang | Xiaofeng He | Hui Xue
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL’s effectiveness in probing factual knowledge and enhancing the model’s performance on various natural language understanding tasks.

pdf bib
TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models
Junbing Yan | Chengyu Wang | Taolin Zhang | Xiaofeng He | Jun Huang | Wei Zhang | Longtao Huang | Hui Xue
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

KEPLMs are pre-trained models that utilize external knowledge to enhance language understanding. Previous language models facilitated knowledge acquisition by incorporating knowledge-related pre-training tasks learned from relation triples in knowledge graphs. However, these models do not prioritize learning embeddings for entity-related tokens. Updating all parameters in KEPLM is computationally demanding. This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models. We observe that text corpora contain entities that follow a long-tail distribution, where some are suboptimally optimized and hinder the pre-training process. To tackle this, we employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information. Moreover, updating a small subset of neurons in the feed-forward networks (FFNs) that store factual knowledge is both sufficient and efficient. Specifically, we utilize dynamic knowledge routing to identify knowledge paths in FFNs and selectively update parameters during pre-training. Experimental results show that TRELM achieves at least a 50% reduction in pre-training time and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.

pdf bib
UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding
Dongyang Li | Taolin Zhang | Jiali Deng | Longtao Huang | Chengyu Wang | Xiaofeng He | Hui Xue
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions. Specifically, to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic. The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters. Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot cross-lingual natural language understanding tasks, including sequence classification, information extraction, and question answering.

2023

pdf bib
Decoder Tuning: Efficient Language Understanding as Decoding
Ganqu Cui | Wentao Li | Ning Ding | Longtao Huang | Zhiyuan Liu | Maosong Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a 200x speed-up. Our code is available at https://github.com/thunlp/DecT.

pdf bib
Large Language Models Can be Lazy Learners: Analyze Shortcuts in In-Context Learning
Ruixiang Tang | Dehan Kong | Longtao Huang | Hui Xue
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) have recently shown great potential for in-context learning, where LLMs learn a new task simply by conditioning on a few input-label pairs (prompts). Despite their potential, our understanding of the factors influencing end-task performance and the robustness of in-context learning remains limited. This paper aims to bridge this knowledge gap by investigating the reliance of LLMs on shortcuts or spurious correlations within prompts. Through comprehensive experiments on classification and extraction tasks, we reveal that LLMs are “lazy learners” that tend to exploit such shortcuts. Additionally, we uncover a surprising finding that larger models are more likely to utilize shortcuts in prompts during inference. Our findings provide a new perspective on evaluating robustness in in-context learning and pose new challenges for detecting and mitigating the use of shortcuts in prompts.

pdf bib
From Adversarial Arms Race to Model-centric Evaluation: Motivating a Unified Automatic Robustness Evaluation Framework
Yangyi Chen | Hongcheng Gao | Ganqu Cui | Lifan Yuan | Dehan Kong | Hanlu Wu | Ning Shi | Bo Yuan | Longtao Huang | Hui Xue | Zhiyuan Liu | Maosong Sun | Heng Ji
Findings of the Association for Computational Linguistics: ACL 2023

Textual adversarial attacks can discover models’ weaknesses by adding semantic-preserved but misleading perturbations to the inputs. The long-lasting adversarial attack-and-defense arms race in Natural Language Processing (NLP) is algorithm-centric, providing valuable techniques for automatic robustness evaluation. However, the existing practice of robustness evaluation may exhibit issues of incomprehensive evaluation, impractical evaluation protocol, and invalid adversarial samples. In this paper, we aim to set up a unified automatic robustness evaluation framework, shifting towards model-centric evaluation to further exploit the advantages of adversarial attacks. To address the above challenges, we first determine robustness evaluation dimensions based on model capabilities and specify the reasonable algorithm to generate adversarial samples for each dimension. Then we establish the evaluation protocol, including evaluation settings and metrics, under realistic demands. Finally, we use the perturbation degree of adversarial samples to control the sample validity. We implement a toolkit RobTest that realizes our automatic robustness evaluation framework. In our experiments, we conduct a robustness evaluation of RoBERTa models to demonstrate the effectiveness of our evaluation framework, and further show the rationality of each component in the framework.

pdf bib
Parameter Efficient Multi-task Fine-tuning by Learning to Transfer Token-wise Prompts
Muling Wu | Wenhao Liu | Jianhan Xu | Changze Lv | Zixuan Ling | Tianlong Li | Longtao Huang | Xiaoqing Zheng | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

Prompt tuning has been proven to be successful on various tasks by incorporating a small number of trainable parameters while freezing large pre-trained language models (PLMs). However, it is still unsettled how to generate more proper prompts for any individual examples and how to extend prompt tuning to multi-task learning scenarios by leveraging cross-task features. To address these challenges, we propose a token-wise prompt tuning (TPT), in which a bank of finer-grained soft prompt tokens is built for multi-task learning by memory network. The tokens are retrieved from the bank against an input example and assembled to an instance-dependent prompt. Extensive experimental results on 14 datasets demonstrated that the models enhanced by our TPT performed far better than full parameter fine-tuned models and achieved state-of-the-art by tuning only 0.035% parameters.

pdf bib
Adversarial Text Generation by Search and Learning
Guoyi Li | Bingkang Shi | Zongzhen Liu | Dehan Kong | Yulei Wu | Xiaodan Zhang | Longtao Huang | Honglei Lyu
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent research has shown that evaluating the robustness of natural language processing models using textual attack methods is significant. However, most existing text attack methods only use heuristic replacement strategies or language models to generate replacement words at the word level. The blind pursuit of high attack success rates makes it difficult to ensure the quality of the generated adversarial text. As a result, adversarial text is often difficult for humans to understand. In fact, many methods that perform well in terms of text attacks often generate adversarial text with poor quality. To address this important gap, our work treats black-box text attack as an unsupervised text generation problem and proposes a search and learning framework for Adversarial Text Generation by Search and Learning (ATGSL) and develops three adversarial attack methods (ATGSL-SA, ATGSL-BM, ATGSL-FUSION) for black box text attacks. We first apply a heuristic search attack algorithm (ATGSL-SA) and a linguistic thesaurus to generate adversarial samples with high semantic similarity. After this process, we train a conditional generative model to learn from the search results while smoothing out search noise. Moreover, we design an efficient ATGSL-BM attack algorithm based on the text generator. Furthermore, we propose a hybrid attack method (ATGSL-FUSION) that integrates the advantages of ATGSL-SA and ATGSL-BM to enhance attack effectiveness. Our proposed attack algorithms are significantly superior to the most advanced methods in terms of attack efficiency and adversarial text quality.

pdf bib
Hallucination Detection for Generative Large Language Models by Bayesian Sequential Estimation
Xiaohua Wang | Yuliang Yan | Longtao Huang | Xiaoqing Zheng | Xuanjing Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have made remarkable advancements in the field of natural language generation. However, the propensity of LLMs to generate inaccurate or non-factual content, termed “hallucinations”, remains a significant challenge. Current hallucination detection methods often necessitate the retrieval of great numbers of relevant evidence, thereby increasing response times. We introduce a unique framework that leverages statistical decision theory and Bayesian sequential analysis to optimize the trade-off between costs and benefits during the hallucination detection process. This approach does not require a predetermined number of observations. Instead, the analysis proceeds in a sequential manner, enabling an expeditious decision towards “belief” or “disbelief” through a stop-or-continue strategy. Extensive experiments reveal that this novel framework surpasses existing methods in both efficiency and precision of hallucination detection. Furthermore, it requires fewer retrieval steps on average, thus decreasing response times.

2022

pdf bib
Prototypical Verbalizer for Prompt-based Few-shot Tuning
Ganqu Cui | Shengding Hu | Ning Ding | Longtao Huang | Zhiyuan Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompt-based tuning for pre-trained language models (PLMs) has shown its effectiveness in few-shot learning. Typically, prompt-based tuning wraps the input text into a cloze question. To make predictions, the model maps the output words to labels via a verbalizer, which is either manually designed or automatically built. However, manual verbalizers heavily depend on domain-specific prior knowledge and human efforts, while finding appropriate label words automatically still remains challenging. In this work, we propose the prototypical verbalizer (ProtoVerb) which is built directly from training data. Specifically, ProtoVerb learns prototype vectors as verbalizers by contrastive learning. In this way, the prototypes summarize training instances and are able to enclose rich class-level semantics. We conduct experiments on both topic classification and entity typing tasks, and the results demonstrate that ProtoVerb significantly outperforms current automatic verbalizers, especially when training data is extremely scarce. More surprisingly, ProtoVerb consistently boosts prompt-based tuning even on untuned PLMs, indicating an elegant non-tuning way to utilize PLMs. Our codes are avaliable at https://github.com/thunlp/OpenPrompt.

pdf bib
Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation
Xiaohui Song | Longtao Huang | Hui Xue | Songlin Hu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Capturing emotions within a conversation plays an essential role in modern dialogue systems. However, the weak correlation between emotions and semantics brings many challenges to emotion recognition in conversation (ERC). Even semantically similar utterances, the emotion may vary drastically depending on contexts or speakers. In this paper, we propose a Supervised Prototypical Contrastive Learning (SPCL) loss for the ERC task. Leveraging the Prototypical Network, the SPCL targets at solving the imbalanced classification problem through contrastive learning and does not require a large batch size. Meanwhile, we design a difficulty measure function based on the distance between classes and introduce curriculum learning to alleviate the impact of extreme samples. We achieve state-of-the-art results on three widely used benchmarks. Further, we conduct analytical experiments to demonstrate the effectiveness of our proposed SPCL and curriculum learning strategy.

pdf bib
Why Should Adversarial Perturbations be Imperceptible? Rethink the Research Paradigm in Adversarial NLP
Yangyi Chen | Hongcheng Gao | Ganqu Cui | Fanchao Qi | Longtao Huang | Zhiyuan Liu | Maosong Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Textual adversarial samples play important roles in multiple subfields of NLP research, including security, evaluation, explainability, and data augmentation. However, most work mixes all these roles, obscuring the problem definitions and research goals of the security role that aims to reveal the practical concerns of NLP models. In this paper, we rethink the research paradigm of textual adversarial samples in security scenarios. We discuss the deficiencies in previous work and propose our suggestions that the research on the Security-oriented adversarial NLP (SoadNLP) should: (1) evaluate their methods on security tasks to demonstrate the real-world concerns; (2) consider real-world attackers’ goals, instead of developing impractical methods. To this end, we first collect, process, and release a security datasets collection Advbench. Then, we reformalize the task and adjust the emphasis on different goals in SoadNLP. Next, we propose a simple method based on heuristic rules that can easily fulfill the actual adversarial goals to simulate real-world attack methods. We conduct experiments on both the attack and the defense sides on Advbench. Experimental results show that our method has higher practical value, indicating that the research paradigm in SoadNLP may start from our new benchmark. All the code and data of Advbench can be obtained at https://github.com/thunlp/Advbench.

pdf bib
Text Editing as Imitation Game
Ning Shi | Bin Tang | Bo Yuan | Longtao Huang | Yewen Pu | Jie Fu | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2022

Text editing, such as grammatical error correction, arises naturally from imperfect textual data. Recent works frame text editing as a multi-round sequence tagging task, where operations – such as insertion and substitution – are represented as a sequence of tags. While achieving good results, this encoding is limited in flexibility as all actions are bound to token-level tags. In this work, we reformulate text editing as an imitation game using behavioral cloning. Specifically, we convert conventional sequence-to-sequence data into state-to-action demonstrations, where the action space can be as flexible as needed. Instead of generating the actions one at a time, we introduce a dual decoders structure to parallel the decoding while retaining the dependencies between action tokens, coupled with trajectory augmentation to alleviate the distribution shift that imitation learning often suffers. In experiments on a suite of Arithmetic Equation benchmarks, our model consistently outperforms the autoregressive baselines in terms of performance, efficiency, and robustness. We hope our findings will shed light on future studies in reinforcement learning applying sequence-level action generation to natural language processing.

pdf bib
Syntax-guided Localized Self-attention by Constituency Syntactic Distance
Shengyuan Hou | Jushi Kai | Haotian Xue | Bingyu Zhu | Bo Yuan | Longtao Huang | Xinbing Wang | Zhouhan Lin
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent works have revealed that Transformers are implicitly learning the syntactic information in its lower layers from data, albeit is highly dependent on the quality and scale of the training data. However, learning syntactic information from data is not necessary if we can leverage an external syntactic parser, which provides better parsing quality with well-defined syntactic structures. This could potentially improve Transformer’s performance and sample efficiency. In this work, we propose a syntax-guided localized self-attention for Transformer that allows directly incorporating grammar structures from an external constituency parser. It prohibits the attention mechanism to overweight the grammatically distant tokens over close ones. Experimental results show that our model could consistently improve translation performance on a variety of machine translation datasets, ranging from small to large dataset sizes, and with different source languages.

pdf bib
Multimodal Knowledge Learning for Named Entity Disambiguation
Zhang Dongjie | Longtao Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

With the popularity of online social media, massive-scale multimodal information has brought new challenges to traditional Named Entity Disambiguation (NED) tasks. Recently, Multimodal Named Entity Disambiguation (MNED) has been proposed to link ambiguous mentions with the textual and visual contexts to a predefined knowledge graph. Existing attempts usually perform MNED by annotating multimodal mentions and adding multimodal features to traditional NED models. However, these studies may suffer from 1) failing to model multimodal information at the knowledge level, and 2) lacking multimodal annotation data against the large-scale unlabeled corpus. In this paper, we explore a pioneer study on leveraging multimodal knowledge learning to address the MNED task. Specifically, we first harvest multimodal knowledge in the Meta-Learning way, which is much easier than collecting ambiguous mention corpus. Then we design a knowledge-guided transfer learning strategy to extract unified representation from different modalities. Finally, we propose an Interactive Multimodal Learning Network (IMN) to fully utilize the multimodal information on both the mention and knowledge sides. Extensive experiments conducted on two public MNED datasets demonstrate that the proposed method achieves improvements over the state-of-the-art multimodal methods.

pdf bib
Multiple Instance Learning for Offensive Language Detection
Jiexi Liu | Dehan Kong | Longtao Huang | Dinghui Mao | Hui Xue
Findings of the Association for Computational Linguistics: EMNLP 2022

Automatic offensive language detection has become a crucial issue in recent years. Existing researches on this topic are usually based on a large amount of data annotated at sentence level to train a robust model. However, sentence-level annotations are expensive in practice as the scenario expands, while there exist a large amount of natural labels from historical information on online platforms such as reports and punishments. Notably, these natural labels are usually in bag-level corresponding to the whole documents (articles, user profiles, conversations, etc.). Therefore, we target at proposing an approach capable of utilizing the bag-level labeled data for offensive language detection in this study. For this purpose, we formalize this task into a multiple instance learning (MIL) problem. We break down the design of existing MIL methods and propose a hybrid fusion MIL model with mutual-attention mechanism. In order to verify the validity of the proposed method, we present two new bag-level labeled datasets for offensive language detection: OLID-bags and MINOR. Experimental results based on the proposed datasets demonstrate the effectiveness of the mutual-attention method at both sentence level and bag level.

2020

pdf bib
SpanMlt: A Span-based Multi-Task Learning Framework for Pair-wise Aspect and Opinion Terms Extraction
He Zhao | Longtao Huang | Rong Zhang | Quan Lu | Hui Xue
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Aspect terms extraction and opinion terms extraction are two key problems of fine-grained Aspect Based Sentiment Analysis (ABSA). The aspect-opinion pairs can provide a global profile about a product or service for consumers and opinion mining systems. However, traditional methods can not directly output aspect-opinion pairs without given aspect terms or opinion terms. Although some recent co-extraction methods have been proposed to extract both terms jointly, they fail to extract them as pairs. To this end, this paper proposes an end-to-end method to solve the task of Pair-wise Aspect and Opinion Terms Extraction (PAOTE). Furthermore, this paper treats the problem from a perspective of joint term and relation extraction rather than under the sequence tagging formulation performed in most prior works. We propose a multi-task learning framework based on shared spans, where the terms are extracted under the supervision of span boundaries. Meanwhile, the pair-wise relations are jointly identified using the span representations. Extensive experiments show that our model consistently outperforms state-of-the-art methods.