Louis Mahon
2024
A Modular Approach for Multimodal Summarization of TV Shows
Louis Mahon
|
Mirella Lapata
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper we address the task of summarizing television shows, which touches key areas in AI research: complex reasoning, multiple modalities, and long narratives. We present a modular approach where separate components perform specialized sub-tasks which we argue affords greater flexibility compared to end-to-end methods. Our modules involve detecting scene boundaries, reordering scenes so as to minimize the number of cuts between different events, converting visual information to text, summarizing the dialogue in each scene, and fusing the scene summaries into a final summary for the entire episode. We also present a new metric, PRISMA (**P**recision and **R**ecall Evaluat**i**on of **s**ummary F**a**cts), to measure both precision and recall of generated summaries, which we decompose into atomic facts. Tested on the recently released SummScreen3D dataset (Papalampidi & Lapata, 2023), our method produces higher quality summaries than comparison models, as measured with ROUGE and our new fact-based metric.
2023
The Proof is in the Pudding: Using Automated Theorem Proving to Generate Cooking Recipes
Louis Mahon
|
Carl Vogel
Journal for Language Technology and Computational Linguistics, Vol. 36 No. 2
This paper presents FASTFOOD, a rule-based natural language generation (NLG) program for cooking recipes. We consider the representation of cooking recipes as discourse representation, because the meaning of each sentence needs to consider the context of the others. Our discourse representation system is based on states of affairs and transtions between states of affairs, and does not use discourse referents. Recipes are generated by using an automated theorem-proving procedure to select the ingredients and instructions, with ingredients corresponding to axioms and instructions to implications. FASTFOOD also contains a temporal optimization module which can rearrange the recipe to make it more time efficient for the user, e.g. the recipe specifies to chop the vegetables while the rice is boiling. The system is described in detail, including the decision to forgo discourse referents and how plausible representations of nouns and verbs emerge purely as a by-product of the practical requirements of efficiently representing recipe content. A comparison is then made with existing recipe generation systems, NLG systems more generally, and automated theorem provers.