Loukia Taxitari


2024

pdf bib
ReadLet: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers
Marcello Ferro | Claudia Marzi | Andrea Nadalini | Loukia Taxitari | Alessandro Lento | Vito Pirrelli
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format.