Lu Dai


pdf bib
Bi-Directional Iterative Prompt-Tuning for Event Argument Extraction
Lu Dai | Bang Wang | Wei Xiang | Yijun Mo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recently, prompt-tuning has attracted growing interests in event argument extraction (EAE). However, the existing prompt-tuning methods have not achieved satisfactory performance due to the lack of consideration of entity information. In this paper, we propose a bi-directional iterative prompt-tuning method for EAE, where the EAE task is treated as a cloze-style task to take full advantage of entity information and pre-trained language models (PLMs). Furthermore, our method explores event argument interactions by introducing the argument roles of contextual entities into prompt construction. Since template and verbalizer are two crucial components in a cloze-style prompt, we propose to utilize the role label semantic knowledge to construct a semantic verbalizer and design three kind of templates for the EAE task. Experiments on the ACE 2005 English dataset with standard and low-resource settings show that the proposed method significantly outperforms the peer state-of-the-art methods.

pdf bib
ConnPrompt: Connective-cloze Prompt Learning for Implicit Discourse Relation Recognition
Wei Xiang | Zhenglin Wang | Lu Dai | Bang Wang
Proceedings of the 29th International Conference on Computational Linguistics

Implicit Discourse Relation Recognition (IDRR) is to detect and classify relation sense between two text segments without an explicit connective. Vanilla pre-train and fine-tuning paradigm builds upon a Pre-trained Language Model (PLM) with a task-specific neural network. However, the task objective functions are often not in accordance with that of the PLM. Furthermore, this paradigm cannot well exploit some linguistic evidence embedded in the pre-training process. The recent pre-train, prompt, and predict paradigm selects appropriate prompts to reformulate downstream tasks, so as to utilizing the PLM itself for prediction. However, for its success applications, prompts, verbalizer as well as model training should still be carefully designed for different tasks. As the first trial of using this new paradigm for IDRR, this paper develops a Connective-cloze Prompt (ConnPrompt) to transform the relation prediction task as a connective-cloze task. Specifically, we design two styles of ConnPrompt template: Insert-cloze Prompt (ICP) and Prefix-cloze Prompt (PCP) and construct an answer space mapping to the relation senses based on the hierarchy sense tags and implicit connectives. Furthermore, we use a multi-prompt ensemble to fuse predictions from different prompting results. Experiments on the PDTB corpus show that our method significantly outperforms the state-of-the-art algorithms, even with fewer training data.

pdf bib
Encoding and Fusing Semantic Connection and Linguistic Evidence for Implicit Discourse Relation Recognition
Wei Xiang | Bang Wang | Lu Dai | Yijun Mo
Findings of the Association for Computational Linguistics: ACL 2022

Prior studies use one attention mechanism to improve contextual semantic representation learning for implicit discourse relation recognition (IDRR). However, diverse relation senses may benefit from different attention mechanisms. We also argue that some linguistic relation in between two words can be further exploited for IDRR. This paper proposes a Multi-Attentive Neural Fusion (MANF) model to encode and fuse both semantic connection and linguistic evidence for IDRR. In MANF, we design a Dual Attention Network (DAN) to learn and fuse two kinds of attentive representation for arguments as its semantic connection. We also propose an Offset Matrix Network (OMN) to encode the linguistic relations of word-pairs as linguistic evidence. Our MANF model achieves the state-of-the-art results on the PDTB 3.0 corpus.