Lu Guo


2023

pdf bib
Can ChatGPT Understand Causal Language in Science Claims?
Yuheun Kim | Lu Guo | Bei Yu | Yingya Li
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis

This study evaluated ChatGPT’s ability to understand causal language in science papers and news by testing its accuracy in a task of labeling the strength of a claim as causal, conditional causal, correlational, or no relationship. The results show that ChatGPT is still behind the existing fine-tuned BERT models by a large margin. ChatGPT also had difficulty understanding conditional causal claims mitigated by hedges. However, its weakness may be utilized to improve the clarity of human annotation guideline. Chain-of-Thoughts were faithful and helpful for improving prompt performance, but finding the optimal prompt is difficult with inconsistent results and the lack of effective method to establish cause-effect between prompts and outcomes, suggesting caution when generalizing prompt engineering results across tasks or models.

2020

pdf bib
Measuring Correlation-to-Causation Exaggeration in Press Releases
Bei Yu | Jun Wang | Lu Guo | Yingya Li
Proceedings of the 28th International Conference on Computational Linguistics

Press releases have an increasingly strong influence on media coverage of health research; however, they have been found to contain seriously exaggerated claims that can misinform the public and undermine public trust in science. In this study we propose an NLP approach to identify exaggerated causal claims made in health press releases that report on observational studies, which are designed to establish correlational findings, but are often exaggerated as causal. We developed a new corpus and trained models that can identify causal claims in the main statements in a press release. By comparing the claims made in a press release with the corresponding claims in the original research paper, we found that 22% of press releases made exaggerated causal claims from correlational findings in observational studies. Furthermore, universities exaggerated more often than journal publishers by a ratio of 1.5 to 1. Encouragingly, the exaggeration rate has slightly decreased over the past 10 years, despite the increase of the total number of press releases. More research is needed to understand the cause of the decreasing pattern.