Lu Sun


2022

pdf bib
Minimally-Supervised Relation Induction from Pre-trained Language Model
Lu Sun | Yongliang Shen | Weiming Lu
Findings of the Association for Computational Linguistics: NAACL 2022

Relation Induction is a very practical task in Natural Language Processing (NLP) area. In practical application scenarios, people want to induce more entity pairs having the same relation from only a few seed entity pairs. Thus, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting where only a couple of seed entity pairs per relation are provided. Although the conventional relation induction methods have made some success, their performance depends heavily on the quality of word embeddings. The great success of Pre-trained Language Models, such as BERT, changes the NLP area a lot, and they are proven to be able to better capture relation knowledge. In this paper, we propose a novel method to induce relation with BERT under the minimally-supervised setting. Specifically, we firstly extract proper templates from the corpus by using the mask-prediction task in BERT to build pseudo-sentences as the context of entity pairs. Then we use BERT attention weights to better represent the pseudo-sentences. In addition, We also use the IntegratedGradient of entity pairs to iteratively select better templates further. Finally, with the high-quality pseudo-sentences, we can train a better classifier for relation induction. Experiments onGoogle Analogy Test Sets (GATS), Bigger Analogy TestSet (BATS) and DiffVec demonstrate that our proposed method achieves state-of-the-art performance.

2021

pdf bib
Heterogeneous Graph Neural Networks for Concept Prerequisite Relation Learning in Educational Data
Chenghao Jia | Yongliang Shen | Yechun Tang | Lu Sun | Weiming Lu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Prerequisite relations among concepts are crucial for educational applications, such as curriculum planning and intelligent tutoring. In this paper, we propose a novel concept prerequisite relation learning approach, named CPRL, which combines both concept representation learned from a heterogeneous graph and concept pairwise features. Furthermore, we extend CPRL under weakly supervised settings to make our method more practical, including learning prerequisite relations from learning object dependencies and generating training data with data programming. Our experiments on four datasets show that the proposed approach achieves the state-of-the-art results comparing with existing methods.