Lu Yuan


2024

pdf bib
i-Code V2: An Autoregressive Generation Framework over Vision, Language, and Speech Data
Ziyi Yang | Mahmoud Khademi | Yichong Xu | Reid Pryzant | Yuwei Fang | Chenguang Zhu | Dongdong Chen | Yao Qian | Xuemei Gao | Yi-Ling Chen | Robert Gmyr | Naoyuki Kanda | Noel Codella | Bin Xiao | Yu Shi | Lu Yuan | Takuya Yoshioka | Michael Zeng | Xuedong Huang
Findings of the Association for Computational Linguistics: NAACL 2024

The convergence of text, visual, and audio data is crucial towards human-like artificial intelligence, however the current Vision-Language-Speech landscape is dominated by encoder-only models that lack generative abilities. We propose closing this gap with i-Code V2, one of the first models capable of generating natural language from any combination of Vision, Language, and Speech data. i-Code V2 leverages state-of-the-art single-modality encoders, combining their outputs with a new modality-fusing encoder to project combinations of modalities into a shared representational space. Language tokens are generated from these representations via an autoregressive decoder. i-Code V2 is pretrained end-to-end on a large collection of dual- and single-modality datasets with a novel text completion objective that can be generalized across arbitrary combinations of modalities. i-Code V2 matches or outperforms state-of-the-art single- and dual-modality baselines on 7 multimodal tasks, demonstrating the power of generative multimodal pretraining across a diversity of tasks and signals.

2023

pdf bib
LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instruction Following
Cheng-Fu Yang | Yen-Chun Chen | Jianwei Yang | Xiyang Dai | Lu Yuan | Yu-Chiang Wang | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent’s insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent’s hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent’s low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents.