Lucas Moeller
2024
Approximate Attributions for Off-the-Shelf Siamese Transformers
Lucas Moeller
|
Dmitry Nikolaev
|
Sebastian Padó
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Siamese encoders such as sentence transformers are among the least understood deep models.Established attribution methods cannot tackle this model class since it compares two inputs rather than processing a single one. To address this gap, we have recently proposed an attribution method specifically for Siamese encoders (Möller et al., 2023). However, it requires models to be adjusted and fine-tuned and therefore cannot be directly applied to off-the-shelf models. In this work, we reassess these restrictions and propose (i) a model with exact attribution ability that retains the original model’s predictive performance and (ii) a way to compute approximate attributions for off-the-shelf models.We extensively compare approximate and exact attributions and use them to analyze the models’ attendance to different linguistic aspects. We gain insights into which syntactic roles Siamese transformers attend to, confirm that they mostly ignore negation, explore how they judge semantically opposite adjectives, and find that they exhibit lexical bias.
2023
An Attribution Method for Siamese Encoders
Lucas Moeller
|
Dmitry Nikolaev
|
Sebastian Padó
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The output takes the form of feature-pair attributions and in case of STs it can be reduced to a token–token matrix. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model’s full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in case of STs few token pairs can dominate predictions and that STs preferentially focus on nouns and verbs. For accurate predictions, however, they need to attend to the majority of tokens and parts of speech.
Search