The aiXplain SDK is an open-source Python toolkit which aims to simplify the wide and complex ecosystem of AI resources. The toolkit enables access to a wide selection of AI assets, including datasets, models, and metrics, from both academic and commercial sources, which can be selected, executed and evaluated in one place through different services in a standardized format with consistent documentation provided. The study showcases the potential of the proposed toolkit with different code examples and by using it on a user journey where state-of-the-art Large Language Models are fine-tuned on instruction prompt datasets, outperforming their base versions.
Abusive speech on online platforms has a detrimental effect on users’ mental health. This warrants the need for innovative solutions that automatically moderate content, especially on online platforms such as Twitter where a user’s anonymity is loosely controlled. This paper outlines aiXplain Inc.’s ensemble based approach to detecting offensive speech in the Arabic language based on OSACT5’s shared sub-task A. Additionally, this paper highlights multiple challenges that may hinder progress on detecting abusive speech and provides potential avenues and techniques that may lead to significant progress.
The performance of Machine Translation (MT) systems varies significantly with inputs of diverging features such as topics, genres, and surface properties. Though there are many MT evaluation metrics that generally correlate with human judgments, they are not directly useful in identifying specific shortcomings of MT systems. In this demo, we present a benchmarking interface that enables improved evaluation of specific MT systems in isolation or multiple MT systems collectively by quantitatively evaluating their performance on many tasks across multiple domains and evaluation metrics. Further, it facilitates effective debugging and error analysis of MT output via the use of dynamic filters that help users hone in on problem sentences with specific properties, such as genre, topic, sentence length, etc. The interface can be extended to include additional filters such as lexical, morphological, and syntactic features. Aside from helping debug MT output, it can also help in identifying problems in reference translations and evaluation metrics.