Lucas Pessutto
2022
UFRGSent at SemEval-2022 Task 10: Structured Sentiment Analysis using a Question Answering Model
Lucas Pessutto
|
Viviane Moreira
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
This paper describes the system submitted by our team (UFRGSent) to SemEval-2022 Task 10: Structured Sentiment Analysis. We propose a multilingual approach that relies on a Question Answering model to find tuples consisting of aspect, opinion, and holder. The approach starts from general questions and uses the extracted tuple elements to find the remaining components. Finally, we employ an aspect sentiment classification model to classify the polarity of the entire tuple. Despite our method being in a mid-rank position on SemEval competition, we show that the question-answering approach can achieve good coverage retrieving sentiment tuples, allowing room for improvements in the technique.