The semantics of a text is manifested not only by what is read but also by what is not read. In this article, we will study how those implicit “not read” information such as end-of-paragraph () and end-of-sequence () affect the quality of text generation. Specifically, we find that the pre-trained language model GPT2 can generate better continuations by learning to generate the in the fine-tuning stage. Experimental results on English story generation show that can lead to higher BLEU scores and lower perplexity. We also conduct experiments on a self-collected Chinese essay dataset with Chinese-GPT2, a character level LM without and during pre-training. Experimental results show that the Chinese GPT2 can generate better essay endings with .
In the paraphrase generation task, source sentences often contain phrases that should not be altered. Which phrases, however, can be context dependent and can vary by application. Our solution to this challenge is to provide the user with explicit tags that can be placed around any arbitrary segment of text to mean “don’t change me!” when generating a paraphrase; the model learns to explicitly copy these phrases to the output. The contribution of this work is a novel data generation technique using distant supervision that allows us to start with a pretrained sequence-to-sequence model and fine-tune a paraphrase generator that exhibits this behavior, allowing user-controllable paraphrase generation. Additionally, we modify the loss during fine-tuning to explicitly encourage diversity in model output. Our technique is language agnostic, and we report experiments in English and Chinese.
Consumers dissatisfied with the normal dispute resolution process provided by an e-commerce company’s customer service agents have the option of escalating their complaints by filing grievances with a government authority. This paper tackles the challenge of monitoring ongoing text chat dialogues to identify cases where the customer expresses such an intent, providing triage and prioritization for a separate pool of specialized agents specially trained to handle more complex situations. We describe a hybrid model that tackles this challenge by integrating recurrent neural networks with manually-engineered features. Experiments show that both components are complementary and contribute to overall recall, outperforming competitive baselines. A trial online deployment of our model demonstrates its business value in improving customer service.
We demonstrate an end-to-end question answering system that integrates BERT with the open-source Anserini information retrieval toolkit. In contrast to most question answering and reading comprehension models today, which operate over small amounts of input text, our system integrates best practices from IR with a BERT-based reader to identify answers from a large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over previous results on a standard benchmark test collection, showing that fine-tuning pretrained BERT with SQuAD is sufficient to achieve high accuracy in identifying answer spans.
We tackle the problem of context reconstruction in Chinese dialogue, where the task is to replace pronouns, zero pronouns, and other referring expressions with their referent nouns so that sentences can be processed in isolation without context. Following a standard decomposition of the context reconstruction task into referring expression detection and coreference resolution, we propose a novel end-to-end architecture for separately and jointly accomplishing this task. Key features of this model include POS and position encoding using CNNs and a novel pronoun masking mechanism. One perennial problem in building such models is the paucity of training data, which we address by augmenting previously-proposed methods to generate a large amount of realistic training data. The combination of more data and better models yields accuracy higher than the state-of-the-art method in coreference resolution and end-to-end context reconstruction.