Lucy Wang


pdf bib
Generating Scientific Claims for Zero-Shot Scientific Fact Checking
Dustin Wright | David Wadden | Kyle Lo | Bailey Kuehl | Arman Cohan | Isabelle Augenstein | Lucy Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automated scientific fact checking is difficult due to the complexity of scientific language and a lack of significant amounts of training data, as annotation requires domain expertise. To address this challenge, we propose scientific claim generation, the task of generating one or more atomic and verifiable claims from scientific sentences, and demonstrate its usefulness in zero-shot fact checking for biomedical claims. We propose CLAIMGEN-BART, a new supervised method for generating claims supported by the literature, as well as KBIN, a novel method for generating claim negations. Additionally, we adapt an existing unsupervised entity-centric method of claim generation to biomedical claims, which we call CLAIMGEN-ENTITY. Experiments on zero-shot fact checking demonstrate that both CLAIMGEN-ENTITY and CLAIMGEN-BART, coupled with KBIN, achieve up to 90% performance of fully supervised models trained on manually annotated claims and evidence. A rigorous evaluation study demonstrates significant improvement in generated claim and negation quality over existing baselines


pdf bib
Overview of the Second Workshop on Scholarly Document Processing
Iz Beltagy | Arman Cohan | Guy Feigenblat | Dayne Freitag | Tirthankar Ghosal | Keith Hall | Drahomira Herrmannova | Petr Knoth | Kyle Lo | Philipp Mayr | Robert Patton | Michal Shmueli-Scheuer | Anita de Waard | Kuansan Wang | Lucy Wang
Proceedings of the Second Workshop on Scholarly Document Processing

With the ever-increasing pace of research and high volume of scholarly communication, scholars face a daunting task. Not only must they keep up with the growing literature in their own and related fields, scholars increasingly also need to rebut pseudo-science and disinformation. These needs have motivated an increasing focus on computational methods for enhancing search, summarization, and analysis of scholarly documents. However, the various strands of research on scholarly document processing remain fragmented. To reach out to the broader NLP and AI/ML community, pool distributed efforts in this area, and enable shared access to published research, we held the 2nd Workshop on Scholarly Document Processing (SDP) at NAACL 2021 as a virtual event ( The SDP workshop consisted of a research track, three invited talks, and three Shared Tasks (LongSumm 2021, SCIVER, and 3C). The program was geared towards the application of NLP, information retrieval, and data mining for scholarly documents, with an emphasis on identifying and providing solutions to open challenges.

pdf bib
MSˆ2: Multi-Document Summarization of Medical Studies
Jay DeYoung | Iz Beltagy | Madeleine van Zuylen | Bailey Kuehl | Lucy Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release MSˆ2 (Multi-Document Summarization of Medical Studies), a dataset of over 470k documents and 20K summaries derived from the scientific literature. This dataset facilitates the development of systems that can assess and aggregate contradictory evidence across multiple studies, and is the first large-scale, publicly available multi-document summarization dataset in the biomedical domain. We experiment with a summarization system based on BART, with promising early results, though significant work remains to achieve higher summarization quality. We formulate our summarization inputs and targets in both free text and structured forms and modify a recently proposed metric to assess the quality of our system’s generated summaries. Data and models are available at


pdf bib
SUPP.AI: finding evidence for supplement-drug interactions
Lucy Wang | Oyvind Tafjord | Arman Cohan | Sarthak Jain | Sam Skjonsberg | Carissa Schoenick | Nick Botner | Waleed Ammar
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Dietary supplements are used by a large portion of the population, but information on their pharmacologic interactions is incomplete. To address this challenge, we present SUPP.AI, an application for browsing evidence of supplement-drug interactions (SDIs) extracted from the biomedical literature. We train a model to automatically extract supplement information and identify such interactions from the scientific literature. To address the lack of labeled data for SDI identification, we use labels of the closely related task of identifying drug-drug interactions (DDIs) for supervision. We fine-tune the contextualized word representations of the RoBERTa language model using labeled DDI data, and apply the fine-tuned model to identify supplement interactions. We extract 195k evidence sentences from 22M articles (P=0.82, R=0.58, F1=0.68) for 60k interactions. We create the SUPP.AI application for users to search evidence sentences extracted by our model. SUPP.AI is an attempt to close the information gap on dietary supplements by making up-to-date evidence on SDIs more discoverable for researchers, clinicians, and consumers. An informational video on how to use SUPP.AI is available at:


pdf bib
Ontology alignment in the biomedical domain using entity definitions and context
Lucy Wang | Chandra Bhagavatula | Mark Neumann | Kyle Lo | Chris Wilhelm | Waleed Ammar
Proceedings of the BioNLP 2018 workshop

Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.

pdf bib
Construction of the Literature Graph in Semantic Scholar
Waleed Ammar | Dirk Groeneveld | Chandra Bhagavatula | Iz Beltagy | Miles Crawford | Doug Downey | Jason Dunkelberger | Ahmed Elgohary | Sergey Feldman | Vu Ha | Rodney Kinney | Sebastian Kohlmeier | Kyle Lo | Tyler Murray | Hsu-Han Ooi | Matthew Peters | Joanna Power | Sam Skjonsberg | Lucy Wang | Chris Wilhelm | Zheng Yuan | Madeleine van Zuylen | Oren Etzioni
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)

We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in