The COVID-19 pandemic has implications beyond physical health, affecting society and economies. Government efforts to slow down the spread of the virus have had a severe impact on many businesses, including restaurants. Mandatory policies such as restaurant closures, bans on social gatherings, and social distancing restrictions have affected restaurant operations as well as customer preferences (e.g., prompting a demand of stricter hygiene standards). As of now, however, it is not clear how and to what extent the pandemic has affected restaurant reviews, an analysis of which could potentially inform policies for addressing this ongoing situation. In this work, we present our efforts to understand the effects of COVID-19 on restaurant reviews, with a focus on Yelp reviews produced during the pandemic for New York City and Los Angeles County restaurants. Overall, we make the following contributions. First, we assemble a dataset of 600 reviews with manual annotations of fine-grained COVID-19 aspects related to restaurants (e.g., hygiene practices, service changes, sympathy and support for local businesses). Second, we address COVID-19 aspect detection using supervised classifiers, weakly-supervised approaches based on keywords, and unsupervised topic modeling approaches, and experimentally show that classifiers based on pre-trained BERT representations achieve the best performance (F1=0.79). Third, we analyze the number and evolution of COVID-related aspects over time and show that the resulting time series have substantial correlation (Spearman’s 𝜌=0.84) with critical statistics related to the COVID-19 pandemic, including the number of new COVID-19 cases. To our knowledge, this is the first work analyzing the effects of COVID-19 on Yelp restaurant reviews and could potentially inform policies by public health departments, for example, to cover resource utilization.
Health departments have been deploying text classification systems for the early detection of foodborne illness complaints in social media documents such as Yelp restaurant reviews. Current systems have been successfully applied for documents in English and, as a result, a promising direction is to increase coverage and recall by considering documents in additional languages, such as Spanish or Chinese. Training previous systems for more languages, however, would be expensive, as it would require the manual annotation of many documents for each new target language. To address this challenge, we consider cross-lingual learning and train multilingual classifiers using only the annotations for English-language reviews. Recent zero-shot approaches based on pre-trained multi-lingual BERT (mBERT) have been shown to effectively align languages for aspects such as sentiment. Interestingly, we show that those approaches are less effective for capturing the nuances of foodborne illness, our public health application of interest. To improve performance without extra annotations, we create artificial training documents in the target language through machine translation and train mBERT jointly for the source (English) and target language. Furthermore, we show that translating labeled documents to multiple languages leads to additional performance improvements for some target languages. We demonstrate the benefits of our approach through extensive experiments with Yelp restaurant reviews in seven languages. Our classifiers identify foodborne illness complaints in multilingual reviews from the Yelp Challenge dataset, which highlights the potential of our general approach for deployment in health departments.
Cross-lingual text classification alleviates the need for manually labeled documents in a target language by leveraging labeled documents from other languages. Existing approaches for transferring supervision across languages require expensive cross-lingual resources, such as parallel corpora, while less expensive cross-lingual representation learning approaches train classifiers without target labeled documents. In this work, we propose a cross-lingual teacher-student method, CLTS, that generates “weak” supervision in the target language using minimal cross-lingual resources, in the form of a small number of word translations. Given a limited translation budget, CLTS extracts and transfers only the most important task-specific seed words across languages and initializes a teacher classifier based on the translated seed words. Then, CLTS iteratively trains a more powerful student that also exploits the context of the seed words in unlabeled target documents and outperforms the teacher. CLTS is simple and surprisingly effective in 18 diverse languages: by transferring just 20 seed words, even a bag-of-words logistic regression student outperforms state-of-the-art cross-lingual methods (e.g., based on multilingual BERT). Moreover, CLTS can accommodate any type of student classifier: leveraging a monolingual BERT student leads to further improvements and outperforms even more expensive approaches by up to 12% in accuracy. Finally, CLTS addresses emerging tasks in low-resource languages using just a small number of word translations.
User-generated reviews can be decomposed into fine-grained segments (e.g., sentences, clauses), each evaluating a different aspect of the principal entity (e.g., price, quality, appearance). Automatically detecting these aspects can be useful for both users and downstream opinion mining applications. Current supervised approaches for learning aspect classifiers require many fine-grained aspect labels, which are labor-intensive to obtain. And, unfortunately, unsupervised topic models often fail to capture the aspects of interest. In this work, we consider weakly supervised approaches for training aspect classifiers that only require the user to provide a small set of seed words (i.e., weakly positive indicators) for the aspects of interest. First, we show that current weakly supervised approaches fail to leverage the predictive power of seed words for aspect detection. Next, we propose a student-teacher approach that effectively leverages seed words in a bag-of-words classifier (teacher); in turn, we use the teacher to train a second model (student) that is potentially more powerful (e.g., a neural network that uses pre-trained word embeddings). Finally, we show that iterative co-training can be used to cope with noisy seed words, leading to both improved teacher and student models. Our proposed approach consistently outperforms previous weakly supervised approaches (by 14.1 absolute F1 points on average) in six different domains of product reviews and six multilingual datasets of restaurant reviews.
In many review classification applications, a fine-grained analysis of the reviews is desirable, because different segments (e.g., sentences) of a review may focus on different aspects of the entity in question. However, training supervised models for segment-level classification requires segment labels, which may be more difficult or expensive to obtain than review labels. In this paper, we employ Multiple Instance Learning (MIL) and use only weak supervision in the form of a single label per review. First, we show that when inappropriate MIL aggregation functions are used, then MIL-based networks are outperformed by simpler baselines. Second, we propose a new aggregation function based on the sigmoid attention mechanism and show that our proposed model outperforms the state-of-the-art models for segment-level sentiment classification (by up to 9.8% in F1). Finally, we highlight the importance of fine-grained predictions in an important public-health application: finding actionable reports of foodborne illness. We show that our model achieves 48.6% higher recall compared to previous models, thus increasing the chance of identifying previously unknown foodborne outbreaks.