Luise Modersohn


pdf bib
GGPONC 2.0 - The German Clinical Guideline Corpus for Oncology: Curation Workflow, Annotation Policy, Baseline NER Taggers
Florian Borchert | Christina Lohr | Luise Modersohn | Jonas Witt | Thomas Langer | Markus Follmann | Matthias Gietzelt | Bert Arnrich | Udo Hahn | Matthieu-P. Schapranow
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Despite remarkable advances in the development of language resources over the recent years, there is still a shortage of annotated, publicly available corpora covering (German) medical language. With the initial release of the German Guideline Program in Oncology NLP Corpus (GGPONC), we have demonstrated how such corpora can be built upon clinical guidelines, a widely available resource in many natural languages with a reasonable coverage of medical terminology. In this work, we describe a major new release for GGPONC. The corpus has been substantially extended in size and re-annotated with a new annotation scheme based on SNOMED CT top level hierarchies, reaching high inter-annotator agreement (γ=.94). Moreover, we annotated elliptical coordinated noun phrases and their resolutions, a common language phenomenon in (not only German) scientific documents. We also trained BERT-based named entity recognition models on this new data set, which achieve high performance on short, coarse-grained entity spans (F1=.89), while the rate of boundary errors increases for long entity spans. GGPONC is freely available through a data use agreement. The trained named entity recognition models, as well as the detailed annotation guide, are also made publicly available.


pdf bib
Towards Label-Agnostic Emotion Embeddings
Sven Buechel | Luise Modersohn | Udo Hahn
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Research in emotion analysis is scattered across different label formats (e.g., polarity types, basic emotion categories, and affective dimensions), linguistic levels (word vs. sentence vs. discourse), and, of course, (few well-resourced but much more under-resourced) natural languages and text genres (e.g., product reviews, tweets, news). The resulting heterogeneity makes data and software developed under these conflicting constraints hard to compare and challenging to integrate. To resolve this unsatisfactory state of affairs we here propose a training scheme that learns a shared latent representation of emotion independent from different label formats, natural languages, and even disparate model architectures. Experiments on a wide range of datasets indicate that this approach yields the desired interoperability without penalizing prediction quality. Code and data are archived under DOI 10.5281/zenodo.5466068.


pdf bib
GGPONC: A Corpus of German Medical Text with Rich Metadata Based on Clinical Practice Guidelines
Florian Borchert | Christina Lohr | Luise Modersohn | Thomas Langer | Markus Follmann | Jan Philipp Sachs | Udo Hahn | Matthieu-P. Schapranow
Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis

The lack of publicly accessible text corpora is a major obstacle for progress in natural language processing. For medical applications, unfortunately, all language communities other than English are low-resourced. In this work, we present GGPONC (German Guideline Program in Oncology NLP Corpus), a freely dis tributable German language corpus based on clinical practice guidelines for oncology. This corpus is one of the largest ever built from German medical documents. Unlike clinical documents, clinical guidelines do not contain any patient-related information and can therefore be used without data protection restrictions. Moreover, GGPONC is the first corpus for the German language covering diverse conditions in a large medical subfield and provides a variety of metadata, such as literature references and evidence levels. By applying and evaluating existing medical information extraction pipelines for German text, we are able to draw comparisons for the use of medical language to other corpora, medical and non-medical ones.

pdf bib
ProGene - A Large-scale, High-Quality Protein-Gene Annotated Benchmark Corpus
Erik Faessler | Luise Modersohn | Christina Lohr | Udo Hahn
Proceedings of the Twelfth Language Resources and Evaluation Conference

Genes and proteins constitute the fundamental entities of molecular genetics. We here introduce ProGene (formerly called FSU-PRGE), a corpus that reflects our efforts to cope with this important class of named entities within the framework of a long-lasting large-scale annotation campaign at the Jena University Language & Information Engineering (JULIE) Lab. We assembled the entire corpus from 11 subcorpora covering various biological domains to achieve an overall subdomain-independent corpus. It consists of 3,308 MEDLINE abstracts with over 36k sentences and more than 960k tokens annotated with nearly 60k named entity mentions. Two annotators strove for carefully assigning entity mentions to classes of genes/proteins as well as families/groups, complexes, variants and enumerations of those where genes and proteins are represented by a single class. The main purpose of the corpus is to provide a large body of consistent and reliable annotations for supervised training and evaluation of machine learning algorithms in this relevant domain. Furthermore, we provide an evaluation of two state-of-the-art baseline systems — BioBert and flair — on the ProGene corpus. We make the evaluation datasets and the trained models available to encourage comparable evaluations of new methods in the future.