Luong Ngoc Quang


2015

pdf bib
Utilisation de mesures de confiance pour améliorer le décodage en traduction de parole
Laurent Besacier | Benjamin Lecouteux | Luong Ngoc Quang
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs

Les mesures de confiance au niveau mot (Word Confidence Estimation - WCE) pour la traduction auto- matique (TA) ou pour la reconnaissance automatique de la parole (RAP) attribuent un score de confiance à chaque mot dans une hypothèse de transcription ou de traduction. Dans le passé, l’estimation de ces mesures a le plus souvent été traitée séparément dans des contextes RAP ou TA. Nous proposons ici une estimation conjointe de la confiance associée à un mot dans une hypothèse de traduction automatique de la parole (TAP). Cette estimation fait appel à des paramètres issus aussi bien des systèmes de transcription de la parole (RAP) que des systèmes de traduction automatique (TA). En plus de la construction de ces estimateurs de confiance robustes pour la TAP, nous utilisons les informations de confiance pour re-décoder nos graphes d’hypothèses de traduction. Les expérimentations réalisées montrent que l’utilisation de ces mesures de confiance au cours d’une seconde passe de décodage permettent d’obtenir une amélioration significative des performances de traduction (évaluées avec la métrique BLEU - gains de deux points par rapport à notre système de traduc- tion de parole de référence). Ces expériences sont faites pour une tâche de TAP (français-anglais) pour laquelle un corpus a été spécialement conçu (ce corpus, mis à la disposition de la communauté TALN, est aussi décrit en détail dans l’article).