Luyang Huang


2024

pdf bib
Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs
Zhiwei Cao | Qian Cao | Yu Lu | Ningxin Peng | Luyang Huang | Shanbo Cheng | Jinsong Su
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.

pdf bib
G-DIG: Towards Gradient-based DIverse and hiGh-quality Instruction Data Selection for Machine Translation
Xingyuan Pan | Luyang Huang | Liyan Kang | Zhicheng Liu | Yu Lu | Shanbo Cheng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable abilities in general scenarios. Instruction finetuning empowers them to align with humans in various tasks. Nevertheless, the Diversity and Quality of the instruction data remain two main challenges for instruction finetuning. With regard to this, in this paper, we propose a novel gradient-based method to automatically select high-quality and diverse instruction finetuning data for machine translation. Our key innovation centers around analyzing how individual training examples influence the model during training. Specifically, we select training examples that exert beneficial influences on the model as high-quality ones by means of Influence Function plus a small high-quality seed dataset. Moreover, to enhance the diversity of the training data we maximize the variety of influences they have on the model by clustering on their gradients and resampling. Extensive experiments on WMT22 and FLORES translation tasks demonstrate the superiority of our methods, and in-depth analysis further validates their effectiveness and generalization.

2023

pdf bib
Beyond Triplet: Leveraging the Most Data for Multimodal Machine Translation
Yaoming Zhu | Zewei Sun | Shanbo Cheng | Luyang Huang | Liwei Wu | Mingxuan Wang
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems focus on better access and use of visual information and tend to validate their methods on image-related datasets. However, these studies face two challenges. First, they can only utilize a limited amount of data that is composed of bilingual texts and images (referred to as “triple data”), which is scarce. Second, current benchmarks for MMT are restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and a new dataset for MMT. We propose a novel framework for MMT that addresses these challenges by utilizing large-scale non-triple data, such as monolingual image-text and parallel text-only data. Additionally, we construct a new e-commercial multimodal translation dataset, named EMMT, of which the test set is specifically designed to include ambiguous words that require visual context for accurate translation. Experiments show that our method is well-suited for real-world scenarios and can significantly improve translation performance with more non-triple data. In addition, our model also rivals or surpasses various SOTA models in conventional multimodal translation benchmarks.

pdf bib
BigVideo: A Large-scale Video Subtitle Translation Dataset for Multimodal Machine Translation
Liyan Kang | Luyang Huang | Ningxin Peng | Peihao Zhu | Zewei Sun | Shanbo Cheng | Mingxuan Wang | Degen Huang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2023

We present a large-scale video subtitle translation dataset, *BigVideo*, to facilitate the study of multi-modality machine translation. Compared with the widely used *How2* and *VaTeX* datasets, *BigVideo* is more than 10 times larger, consisting of 4.5 million sentence pairs and 9,981 hours of videos. We also introduce two deliberately designed test sets to verify the necessity of visual information: *Ambiguous* with the presence of ambiguous words, and *Unambiguous* in which the text context is self-contained for translation. To better model the common semantics shared across texts and videos, we introduce a contrastive learning method in the cross-modal encoder. Extensive experiments on the *BigVideo* shows that: a) Visual information consistently improves the NMT model in terms of BLEU, BLEURT and COMET on both Ambiguous and Unambiguous test sets. b) Visual information helps disambiguation, compared to the strong text baseline on terminology-targeted scores and human evaluation.

2022

pdf bib
DU-VLG: Unifying Vision-and-Language Generation via Dual Sequence-to-Sequence Pre-training
Luyang Huang | Guocheng Niu | Jiachen Liu | Xinyan Xiao | Hua Wu
Findings of the Association for Computational Linguistics: ACL 2022

Due to the limitations of the model structure and pre-training objectives, existing vision-and-language generation models cannot utilize pair-wise images and text through bi-directional generation. In this paper, we propose DU-VLG, a framework which unifies vision-and-language generation as sequence generation problems. DU-VLG is trained with novel dual pre-training tasks: multi-modal denoising autoencoder tasks and modality translation tasks. To bridge the gap between image understanding and generation, we further design a novel commitment loss. We compare pre-training objectives on image captioning and text-to-image generation datasets. Results show that DU-VLG yields better performance than variants trained with uni-directional generation objectives or the variant without the commitment loss. We also obtain higher scores compared to previous state-of-the-art systems on three vision-and-language generation tasks. In addition, human judges further confirm that our model generates real and relevant images as well as faithful and informative captions.

2021

pdf bib
Efficient Attentions for Long Document Summarization
Luyang Huang | Shuyang Cao | Nikolaus Parulian | Heng Ji | Lu Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.

2020

pdf bib
Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
Luyang Huang | Lingfei Wu | Lu Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Sequence-to-sequence models for abstractive summarization have been studied extensively, yet the generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, the summarizer should acquire semantic interpretation over input, e.g., via structured representation, to allow the generation of more informative summaries. In this paper, we present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD. We propose the use of dual encoders—a sequential document encoder and a graph-structured encoder—to maintain the global context and local characteristics of entities, complementing each other. We further design a reward based on a multiple choice cloze test to drive the model to better capture entity interactions. Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets. We also obtain better or comparable performance compared to systems that are fine-tuned from large pretrained language models. Human judges further rate our model outputs as more informative and containing fewer unfaithful errors.

2019

pdf bib
An Entity-Driven Framework for Abstractive Summarization
Eva Sharma | Luyang Huang | Zhe Hu | Lu Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Abstractive summarization systems aim to produce more coherent and concise summaries than their extractive counterparts. Popular neural models have achieved impressive results for single-document summarization, yet their outputs are often incoherent and unfaithful to the input. In this paper, we introduce SENECA, a novel System for ENtity-drivEn Coherent Abstractive summarization framework that leverages entity information to generate informative and coherent abstracts. Our framework takes a two-step approach: (1) an entity-aware content selection module first identifies salient sentences from the input, then (2) an abstract generation module conducts cross-sentence information compression and abstraction to generate the final summary, which is trained with rewards to promote coherence, conciseness, and clarity. The two components are further connected using reinforcement learning. Automatic evaluation shows that our model significantly outperforms previous state-of-the-art based on ROUGE and our proposed coherence measures on New York Times and CNN/Daily Mail datasets. Human judges further rate our system summaries as more informative and coherent than those by popular summarization models.