Luyao Shi


2024

pdf bib
Self-Regulated Data-Free Knowledge Amalgamation for Text Classification
Prashanth Vijayaraghavan | Hongzhi Wang | Luyao Shi | Tyler Baldwin | David Beymer | Ehsan Degan
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Recently, there has been a growing availability of pre-trained text models on various model repositories. These models greatly reduce the cost of training new models from scratch as they can be fine-tuned for specific tasks or trained on large datasets. However, these datasets may not be publicly accessible due to the privacy, security, or intellectual property issues. In this paper, we aim to develop a lightweight student network that can learn from multiple teacher models without accessing their original training data. Hence, we investigate Data-Free Knowledge Amalgamation (DFKA), a knowledge-transfer task that combines insights from multiple pre-trained teacher models and transfers them effectively to a compact student network. To accomplish this, we propose STRATANET, a modeling framework comprising: (a) a steerable data generator that produces text data tailored to each teacher and (b) an amalgamation module that implements a self-regulative strategy using confidence estimates from the teachers’ different layers to selectively integrate their knowledge and train a versatile student. We evaluate our method on three benchmark text classification datasets with varying labels or domains. Empirically, we demonstrate that the student model learned using our STRATANET outperforms several baselines significantly under data-driven and data-free constraints.

2022

pdf bib
Improving Neural Models for Radiology Report Retrieval with Lexicon-based Automated Annotation
Luyao Shi | Tanveer Syeda-mahmood | Tyler Baldwin
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Many clinical informatics tasks that are based on electronic health records (EHR) need relevant patient cohorts to be selected based on findings, symptoms and diseases. Frequently, these conditions are described in radiology reports which can be retrieved using information retrieval (IR) methods. The latest of these techniques utilize neural IR models such as BERT trained on clinical text. However, these methods still lack semantic understanding of the underlying clinical conditions as well as ruled out findings, resulting in poor precision during retrieval. In this paper we combine clinical finding detection with supervised query match learning. Specifically, we use lexicon-driven concept detection to detect relevant findings in sentences. These findings are used as queries to train a Sentence-BERT (SBERT) model using triplet loss on matched and unmatched query-sentence pairs. We show that the proposed supervised training task remarkably improves the retrieval performance of SBERT. The trained model generalizes well to unseen queries and reports from different collections.