Lvxiaowei Xu
2024
CoELM: Construction-Enhanced Language Modeling
Lvxiaowei Xu
|
Zhilin Gong
|
Jianhua Dai
|
Tianxiang Wang
|
Ming Cai
|
Jiawei Peng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent studies have shown that integrating constructional information can improve the performance of pre-trained language models (PLMs) in natural language understanding. However, exploration into leveraging constructional information to enhance generative language models for natural language generation has been limited. Additionally, probing studies indicate that PLMs primarily grasp the syntactic structure of constructions but struggle to capture their semantics. In this work, we encode constructions as inductive biases to explicitly embed constructional semantics and guide the generation process. We begin by presenting a construction grammar induction framework designed to automatically identify constructions from corpora. Subsequently, we propose the Construction-Enhanced Language Model (CoELM). It introduces a construction-guided language modeling approach that employs a dynamic sequence reassembly strategy during pre-training. Extensive experiments have demonstrated the superiority of CoELM across various benchmarks.
2023
Enhancing Language Representation with Constructional Information for Natural Language Understanding
Lvxiaowei Xu
|
Jianwang Wu
|
Jiawei Peng
|
Zhilin Gong
|
Ming Cai
|
Tianxiang Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Natural language understanding (NLU) is an essential branch of natural language processing, which relies on representations generated by pre-trained language models (PLMs). However, PLMs primarily focus on acquiring lexico-semantic information, while they may be unable to adequately handle the meaning of constructions. To address this issue, we introduce construction grammar (CxG), which highlights the pairings of form and meaning, to enrich language representation. We adopt usage-based construction grammar as the basis of our work, which is highly compatible with statistical models such as PLMs. Then a HyCxG framework is proposed to enhance language representation through a three-stage solution. First, all constructions are extracted from sentences via a slot-constraints approach. As constructions can overlap with each other, bringing redundancy and imbalance, we formulate the conditional max coverage problem for selecting the discriminative constructions. Finally, we propose a relational hypergraph attention network to acquire representation from constructional information by capturing high-order word interactions among constructions. Extensive experiments demonstrate the superiority of the proposed model on a variety of NLU tasks.
2022
FCGEC: Fine-Grained Corpus for Chinese Grammatical Error Correction
Lvxiaowei Xu
|
Jianwang Wu
|
Jiawei Peng
|
Jiayu Fu
|
Ming Cai
Findings of the Association for Computational Linguistics: EMNLP 2022
Grammatical Error Correction (GEC) has been broadly applied in automatic correction and proofreading system recently. However, it is still immature in Chinese GEC due to limited high-quality data from native speakers in terms of category and scale. In this paper, we present FCGEC, a fine-grained corpus to detect, identify and correct the grammatical errors. FCGEC is a human-annotated corpus with multiple references, consisting of 41,340 sentences collected mainly from multi-choice questions in public school Chinese examinations. Furthermore, we propose a Switch-Tagger-Generator (STG) baseline model to correct the grammatical errors in low-resource settings. Compared to other GEC benchmark models, experimental results illustrate that STG outperforms them on our FCGEC. However, there exists a significant gap between benchmark models and humans that encourages future models to bridge it.
Search
Fix data
Co-authors
- Ming Cai 3
- Jiawei Peng 3
- Zhilin Gong 2
- Tianxiang Wang 2
- Jianwang Wu 2
- show all...