Étant donné que les modèles de langue pré-entraînés (PLM) constituent la pierre angulaire des modèles de recherche d’informations les plus récents, la façon dont ils encodent la connaissance sémantique est particulièrement importante.Cependant, on s’est peu intéressé à la capacité des PLM à capturer la connaissance sémantique hiérarchique. Traditionnellement, l’évaluation de ces connaissances codées dans les PLM s’appuie sur leurs performances lors d’évaluations dépendantes de la tâche, basées sur des tâches proxy telles que la détection d’hyperonymes.Malheureusement, cette approche ignore potentiellement d’autres relations taxonomiques implicites et complexes.Dans ce travail, nous proposons une méthode d’évaluation indépendante de la tâche, capable d’évaluer dans quelle mesure les PLM peuvent capturer des relations taxonomiques complexes, telles que les ancêtres et les frères et sœurs.Cette évaluation, basée sur des propriétés intrinsèques capturant ces relations, montre que les connaissances lexico-sémantiques codées implicitement dans les PLM ne capturent pas toujours les relations hiérarchiques. Nous démontrons en outre que les propriétés proposées peuvent être injectées dans les PLM pour améliorer leur compréhension de la hiérarchie. Grâce à des évaluations portant sur la reconstruction de taxonomies, la découverte d’hyperonymes et la compréhension de lecture, nous montrons que la connaissance de la hiérarchie est modérément transférable entre les tâches, mais pas de manière systématique.Ceci est le résumé de l’article “Probing Pretrained Language Models with Hierarchy Properties” publié à ECIR 2024.
The lack of standardized evaluation benchmarks in the medical domain for text inputs can be a barrier to widely adopting and leveraging the potential of natural language models for health-related downstream tasks. This paper revisited an openly available MIMIC-IV benchmark for electronic health records (EHRs) to address this issue. First, we integrate the MIMIC-IV data within the Hugging Face datasets library to allow an easy share and use of this collection. Second, we investigate the application of templates to convert EHR tabular data to text. Experiments using fine-tuned and zero-shot LLMs on the mortality of patients task show that fine-tuned text-based models are competitive against robust tabular classifiers. In contrast, zero-shot LLMs struggle to leverage EHR representations. This study underlines the potential of text-based approaches in the medical field and highlights areas for further improvement.
Les bases de connaissances sont des ressources essentielles dans un large éventail d’applications à forte intensité de connaissances. Cependant, leur incomplétude limite intrinsèquement leur utilisation et souligne l’importance de les compléter. À cette fin, la littérature a récemment adopté un point de vue de monde ouvert en associant la capacité des bases de connaissances à représenter des connaissances factuelles aux capacités des modèles de langage pré-entraînés (PLM) à capturer des connaissances linguistiques de haut niveau et contextuelles à partir de corpus de textes. Dans ce travail, nous proposons un cadre de distillation pour la complétion des bases de connaissances où les PLMs exploitent les étiquettes souples sous la forme de prédictions d’entités et de relations fournies par un modèle de plongements de bases de connaissances, tout en conservant leur pouvoir de prédiction d’entités sur de grandes collections des textes. Pour mieux s’adapter à la tâche de complétion des connaissances, nous étendons la modélisation traditionnelle du langage masqué des PLM à la prédiction d’entités et d’entités liées dans le contexte. Des expériences utilisant les tâches à forte intensité de connaissances dans le cadre du benchmark d’évaluation KILT montrent le potentiel de notre approche.
Des études récentes ont identifié de nouveaux défis dans la tâche de reconnaissance d’entités nommées (NER), tels que la reconnaissance d’entités complexes qui ne sont pas des phrases nominales simples et/ou figurent dans des entrées textuelles courtes, avec une faible quantité d’informations contextuelles. Cet article propose une nouvelle approche qui relève ce défi, en se basant sur des modèles de langues pré-entraînés par enrichissement des définitions des types d’entités issus d’une base de connaissances. Les expériences menées dans le cadre de la tâche MultiCoNER I de SemEval ont montré que l’approche proposée permet d’atteindre des gains en performance par rapport aux modèles de référence de la tâche.
Recent years have witnessed a growing interest towards learning distributed query representations that are able to capture search intent semantics. Most existing approaches learn query embeddings using relevance supervision making them suited only to document ranking tasks. Besides, they generally consider either user’s query reformulations or system’s rankings whereas previous findings show that user’s query behavior and knowledge change depending on the system’s results, intertwine and affect each other during the completion of a search task. In this paper, we explore the value of multi-view learning for generic and unsupervised session-aware query representation learning. First, single-view query embeddings are obtained in separate spaces from query reformulations and document ranking representations using transformers. Then, we investigate the use of linear (CCA) and non linear (UMAP) multi-view learning methods, to align those spaces with the aim of revealing similarity traits in the multi-view shared space. Experimental evaluation is carried out in a query classification and session-based retrieval downstream tasks using respectively the KDD and TREC session datasets. The results show that multi-view learning is an effective and controllable approach for unsupervised learning of generic query representations and can reflect search behavior patterns.
Despite the success of state-of-the-art pre-trained language models (PLMs) on a series of multi-hop reasoning tasks, they still suffer from their limited abilities to transfer learning from simple to complex tasks and vice-versa. We argue that one step forward to overcome this limitation is to better understand the behavioral trend of PLMs at each hop over the inference chain. Our critical underlying idea is to mimic human-style reasoning: we envision the multi-hop reasoning process as a sequence of explicit single-hop reasoning steps. To endow PLMs with incremental reasoning skills, we propose a set of inference strategies on relevant facts and distractors allowing us to build automatically generated training datasets. Using the SHINRA and ConceptNet resources jointly, we empirically show the effectiveness of our proposal on multiple-choice question answering and reading comprehension, with a relative improvement in terms of accuracy of 68.4% and 16.0% w.r.t. classic PLMs, respectively.