Lyndon White
2018
Learning-based Composite Metrics for Improved Caption Evaluation
Naeha Sharif
|
Lyndon White
|
Mohammed Bennamoun
|
Syed Afaq Ali Shah
Proceedings of ACL 2018, Student Research Workshop
The evaluation of image caption quality is a challenging task, which requires the assessment of two main aspects in a caption: adequacy and fluency. These quality aspects can be judged using a combination of several linguistic features. However, most of the current image captioning metrics focus only on specific linguistic facets, such as the lexical or semantic, and fail to meet a satisfactory level of correlation with human judgements at the sentence-level. We propose a learning-based framework to incorporate the scores of a set of lexical and semantic metrics as features, to capture the adequacy and fluency of captions at different linguistic levels. Our experimental results demonstrate that composite metrics draw upon the strengths of stand-alone measures to yield improved correlation and accuracy.
NovelPerspective: Identifying Point of View Characters
Lyndon White
|
Roberto Togneri
|
Wei Liu
|
Mohammed Bennamoun
Proceedings of ACL 2018, System Demonstrations
We present NovelPerspective: a tool to allow consumers to subset their digital literature, based on point of view (POV) character. Many novels have multiple main characters each with their own storyline running in parallel. A well-known example is George R. R. Martin’s novel: “A Game of Thrones”, and others from that series. Our tool detects the main character that each section is from the POV of, and allows the user to generate a new ebook with only those sections. This gives consumers new options in how they consume their media; allowing them to pursue the storylines sequentially, or skip chapters about characters they find boring. We present two heuristic-based baselines, and two machine learning based methods for the detection of the main character.