2024
pdf
bib
abs
Pause-Aware Automatic Dubbing using LLM and Voice Cloning
Yuang Li
|
Jiaxin Guo
|
Min Zhang
|
Ma Miaomiao
|
Zhiqiang Rao
|
Weidong Zhang
|
Xianghui He
|
Daimeng Wei
|
Hao Yang
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)
Automatic dubbing aims to translate the speech of a video into another language, ensuring the new speech naturally fits the original video. This paper details Huawei Translation Services Center’s (HW-TSC) submission for IWSLT 2024’s automatic dubbing task, under an unconstrained setting. Our system’s machine translation (MT) component utilizes a Transformer-based MT model and an LLM-based post-editor to produce translations of varying lengths. The text-to-speech (TTS) component employs a VITS-based TTS model and a voice cloning module to emulate the original speaker’s vocal timbre. For enhanced dubbing synchrony, we introduce a parsing-informed pause selector. Finally, we rerank multiple results based on lip-sync error distance (LSE-D) and character error rate (CER). Our system achieves LSE-D of 10.75 and 12.19 on subset1 and subset2 of DE-EN test sets respectively, superior to last year’s best system.
pdf
bib
abs
HW-TSC’s Participation in the WMT 2024 QEAPE Task
Jiawei Yu
|
Xiaofeng Zhao
|
Min Zhang
|
Zhao Yanqing
|
Yuang Li
|
Su Chang
|
Xiaosong Qiao
|
Ma Miaomiao
|
Hao Yang
Proceedings of the Ninth Conference on Machine Translation
The paper presents the submission by HW-TSC in the WMT 2024 Quality-informed Automatic Post Editing (QEAPE) shared task for the English-Hindi (En-Hi) and English-Tamil (En-Ta) language pair. We use LLM for En-Hi and Transformer for EN-ta respectively. For LLM, we first continue pertrain the Llama3, and then use the real APE data to SFT the pre-trained LLM. As for the transformer in En-Ta, we first pre-train a Machine Translation (MT) model by utilizing MT data collected from the web. Then, we fine-tune the model by employing real APE data.We also use the data augmentation method to enhance our model. Specifically, we incorporate candidate translations obtained from an external Machine Translation (MT) system.Given that APE systems tend to exhibit a tendency of ‘over-correction’, we employ a sentence-level Quality Estimation (QE) system to select the final output, deciding between the original translation and the corresponding output generated by the APE model. Our experiments demonstrate that pre-trained MT models are effective when being fine-tuned with the APE corpus of a limited size, and the performance can be further improved with external MT augmentation. our approach improves the HTER by -15.99 points and -0.47 points on En-Hi and En-Ta, respectively.
2023
pdf
bib
abs
Empowering a Metric with LLM-assisted Named Entity Annotation: HW-TSC’s Submission to the WMT23 Metrics Shared Task
Zhanglin Wu
|
Yilun Liu
|
Min Zhang
|
Xiaofeng Zhao
|
Junhao Zhu
|
Ming Zhu
|
Xiaosong Qiao
|
Jingfei Zhang
|
Ma Miaomiao
|
Zhao Yanqing
|
Song Peng
|
Shimin Tao
|
Hao Yang
|
Yanfei Jiang
Proceedings of the Eighth Conference on Machine Translation
This paper presents the submission of Huawei Translation Service Center (HW-TSC) to the WMT23 metrics shared task, in which we submit two metrics: KG-BERTScore and HWTSC-EE-Metric. Among them, KG-BERTScore is our primary submission for the reference-free metric, which can provide both segment-level and system-level scoring. While HWTSC-EE-Metric is our primary submission for the reference-based metric, which can only provide system-level scoring. Overall, our metrics show relatively high correlations with MQM scores on the metrics tasks of previous years. Especially on system-level scoring tasks, our metrics achieve new state-of-the-art in many language pairs.
pdf
bib
abs
HW-TSC’s Participation in the WMT 2023 Automatic Post Editing Shared Task
Jiawei Yu
|
Min Zhang
|
Zhao Yanqing
|
Xiaofeng Zhao
|
Yuang Li
|
Su Chang
|
Yinglu Li
|
Ma Miaomiao
|
Shimin Tao
|
Hao Yang
Proceedings of the Eighth Conference on Machine Translation
The paper presents the submission by HW-TSC in the WMT 2023 Automatic Post Editing (APE) shared task for the English-Marathi (En-Mr) language pair. Our method encompasses several key steps. First, we pre-train an APE model by utilizing synthetic APE data provided by the official task organizers. Then, we fine-tune the model by employing real APE data. For data augmentation, we incorporate candidate translations obtained from an external Machine Translation (MT) system. Furthermore, we integrate the En-Mr parallel corpus from the Flores-200 dataset into our training data. To address the overfitting issue, we employ R-Drop during the training phase. Given that APE systems tend to exhibit a tendency of ‘over-correction’, we employ a sentence-level Quality Estimation (QE) system to select the final output, deciding between the original translation and the corresponding output generated by the APE model. Our experiments demonstrate that pre-trained APE models are effective when being fine-tuned with the APE corpus of a limited size, and the performance can be further improved with external MT augmentation. Our approach improves the TER and BLEU scores on the development set by -2.42 and +3.76 points, respectively.
pdf
bib
abs
KG-IQES: An Interpretable Quality Estimation System for Machine Translation Based on Knowledge Graph
Junhao Zhu
|
Min Zhang
|
Hao Yang
|
Song Peng
|
Zhanglin Wu
|
Yanfei Jiang
|
Xijun Qiu
|
Weiqiang Pan
|
Ming Zhu
|
Ma Miaomiao
|
Weidong Zhang
Proceedings of Machine Translation Summit XIX, Vol. 2: Users Track
The widespread use of machine translation (MT) has driven the need for effective automatic quality estimation (AQE) methods. How to enhance the interpretability of MT output quality estimation is well worth exploring in the industry. From the perspective of the alignment of named entities (NEs) in the source and translated sentences, we construct a multilingual knowledge graph (KG) consisting of domain-specific NEs, and design a KG-based interpretable quality estimation (QE) system for machine translations (KG-IQES). KG-IQES effectively estimates the translation quality without relying on reference translations. Its effectiveness has been verified in our business scenarios.
2022
pdf
bib
abs
CrossQE: HW-TSC 2022 Submission for the Quality Estimation Shared Task
Shimin Tao
|
Su Chang
|
Ma Miaomiao
|
Hao Yang
|
Xiang Geng
|
Shujian Huang
|
Min Zhang
|
Jiaxin Guo
|
Minghan Wang
|
Yinglu Li
Proceedings of the Seventh Conference on Machine Translation (WMT)
Quality estimation (QE) is a crucial method to investigate automatic methods for estimating the quality of machine translation results without reference translations. This paper presents Huawei Translation Services Center’s (HW-TSC’s) work called CrossQE in WMT 2022 QE shared tasks 1 and 2, namely sentence- and word- level quality prediction and explainable QE.CrossQE employes the framework of predictor-estimator for task 1, concretely with a pre-trained cross-lingual XLM-RoBERTa large as predictor and task-specific classifier or regressor as estimator. An extensive set of experimental results show that after adding bottleneck adapter layer, mean teacher loss, masked language modeling task loss and MC dropout methods in CrossQE, the performance has improved to a certain extent. For task 2, CrossQE calculated the cosine similarity between each word feature in the target and each word feature in the source by task 1 sentence-level QE system’s predictor, and used the inverse value of maximum similarity between each word in the target and the source as the word translation error risk value. Moreover, CrossQE has outstanding performance on QE test sets of WMT 2022.