Large Language Models (LLMs) are at the forefront of NLP achievements but fall short in dealing with shortcut learning, factual inconsistency, and vulnerability to adversarial inputs. These shortcomings are especially critical in medical contexts, where they can misrepresent actual model capabilities. Addressing this, we present SemEval-2024 Task 2: Safe Biomedical Natural Language Inference for Clinical Trials. Our contributions include the refined NLI4CT-P dataset (i.e. Natural Language Inference for Clinical Trials - Perturbed), designed to challenge LLMs with interventional and causal reasoning tasks, along with a comprehensive evaluation of methods and results for participant submissions. A total of 106 participants registered for the task contributing to over 1200 individual submissions and 25 system overview papers. This initiative aims to advance the robustness and applicability of NLI models in healthcare, ensuring safer and more dependable AI assistance in clinical decision-making. We anticipate that the dataset, models, and outcomes of this task can support future research in the field of biomedical NLI. The dataset, competition leaderboard, and website are publicly available.
How can we interpret and retrieve medical evidence to support clinical decisions? Clinical trial reports (CTR) amassed over the years contain indispensable information for the development of personalized medicine. However, it is practically infeasible to manually inspect over 400,000+ clinical trial reports in order to find the best evidence for experimental treatments. Natural Language Inference (NLI) offers a potential solution to this problem, by allowing the scalable computation of textual entailment. However, existing NLI models perform poorly on biomedical corpora, and previously published datasets fail to capture the full complexity of inference over CTRs. In this work, we present a novel resource to advance research on NLI for reasoning on CTRs. The resource includes two main tasks. Firstly, to determine the inference relation between a natural language statement, and a CTR. Secondly, to retrieve supporting facts to justify the predicted relation. We provide NLI4CT, a corpus of 2400 statements and CTRs, annotated for these tasks. Baselines on this corpus expose the limitations of existing NLI approaches, with 6 state-of-the-art NLI models achieving a maximum F1 score of 0.627. To the best of our knowledge, we are the first to design a task that covers the interpretation of full CTRs. To encourage further work on this challenging dataset, we make the corpus, competition leaderboard, and website, available on CodaLab, and code to replicate the baseline experiments on GitHub.
This paper describes the results of SemEval 2023 task 7 – Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) – consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.