Communication between physician and patients can lead to misunderstandings, especially for disabled people. An automatic system that translates natural language into a pictographic language is one of the solutions that could help to overcome this issue. In this preliminary study, we present the French version of a translation system using the Arasaac pictographs and we investigate the strategies used by speech therapists to translate into pictographs. We also evaluate the medical coverage of this tool for translating physician questions and patient instructions.
Evaluating automatic text simplification (ATS) systems is a difficult task that is either performed by automatic metrics or user-based evaluations. However, from a linguistic point-of-view, it is not always clear on what bases these evaluations operate. In this paper, we propose annotations of the ASSET corpus that can be used to shed more light on ATS evaluation. In addition to contributing with this resource, we show how it can be used to analyze SARI’s behavior and to re-evaluate existing ATS systems. We present our insights as a step to improve ATS evaluation protocols in the future.
The use of images has been shown to positively affect patient comprehension in medical settings, in particular to deliver specific medical instructions. However, tools that automatically translate sentences into pictographs are still scarce due to the lack of resources. Previous studies have focused on the translation of sentences into pictographs by using WordNet combined with rule-based approaches and deep learning methods. In this work, we showed how we leveraged the BabelDr system, a speech to speech translator for medical triage, to build a speech to pictograph translator using UMLS and neural machine translation approaches. We showed that the translation from French sentences to a UMLS gloss can be viewed as a machine translation task and that a Multilingual Neural Machine Translation system achieved the best results.
We present an adaptation of the Text-to-Picto system, initially designed for Dutch, and extended to English and Spanish. The original system, aimed at people with an intellectual disability, automatically translates text into pictographs (Sclera and Beta). We extend it to French and add a large set of Arasaac pictographs linked to WordNet 3.1. To carry out this adaptation, we automatically link the pictographs and their metadata to synsets of two French WordNets and leverage this information to translate words into pictographs. We automatically and manually evaluate our system with different corpora corresponding to different use cases, including one for medical communication between doctors and patients. The system is also compared to similar systems in other languages.
This article presents the AMesure platform, which aims to assist writers of French administrative texts in simplifying their writing. This platform includes a readability formula specialized for administrative texts and it also uses various natural language processing (NLP) tools to analyze texts and highlight a number of linguistic phenomena considered difficult to read. Finally, based on the difficulties identified, it offers pieces of advice coming from official plain language guides to users. This paper describes the different components of the system and reports an evaluation of these components.