Makoto Nakatsuji
2024
Word-Aware Modality Stimulation for Multimodal Fusion
Shuhei Tateishi
|
Yasuhito Osugi
|
Makoto Nakatsuji
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Multimodal learning is generally expected to make more accurate predictions than text-only analysis. Here, although various methods for fusing multimodal inputs have been proposed for sentiment analysis tasks, we found that they may be inhibiting their fusion methods, which are based on attention-based language models, from learning non-verbal modalities, because non-verbal ones are isolated from the linguistic semantics and contexts and do not include them, meaning that they are unsuitable for applying attention to text modalities during the fusion phase. To address this issue, we propose Word-aware Modality Stimulation Fusion (WA-MSF) for facilitating integration of non-verbal modalities with the text modality. The Modality Stimulation Unit layer (MSU-layer) is the core concept of WA-MSF; it integrates language contexts and semantics into non-verbal modalities, thereby instilling linguistic essence into these modalities. Moreover, WA-MSF uses aMLP in the fusion phase in order to utilize spatial and temporal representations of non-verbal modalities more effectively than transformer fusion. In our experiments, WA-MSF set a new state-of-the-art level of performance on sentiment prediction tasks.
2010
Study of Word Sense Disambiguation System that uses Contextual Features - Approach of Combining Associative Concept Dictionary and Corpus -
Kyota Tsutsumida
|
Jun Okamoto
|
Shun Ishizaki
|
Makoto Nakatsuji
|
Akimichi Tanaka
|
Tadasu Uchiyama
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)
We propose a Word Sense Disambiguation (WSD) method that accurately classifies ambiguous words to concepts in the Associative Concept Dictionary (ACD) even when the test corpus and the training corpus for WSD are acquired from different domains. Many WSD studies determine the context of the target ambiguous word by analyzing sentences containing the target word. However, they offer poor performance when they are applied to a corpus that differs from the training corpus. One solution is to use associated words that are domain-independently assigned to the concept in ACD; i.e. many users commonly imagine those words against a given concept. Furthermore, by using the associated words of a concept as search queries for a training corpus, our method extracts relevant words, those that are computationally judged to be related to that concept. By checking the frequency of associated words and relevant words that appear near to the target word in a sentence in the test corpus, our method classifies the target word to the concept in ACD. Our evaluation using two different types of corpus demonstrates its good accuracy.
Search
Fix data
Co-authors
- Shun Ishizaki 1
- Jun Okamoto 1
- Yasuhito Osugi 1
- Akimichi Tanaka 1
- Shuhei Tateishi 1
- show all...