Man Luo


2024

pdf bib
LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models
Mihir Parmar | Nisarg Patel | Neeraj Varshney | Mutsumi Nakamura | Man Luo | Santosh Mashetty | Arindam Mitra | Chitta Baral
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks. But, can they really “reason” over the natural language? This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied. However, the crucial skill pertaining to ‘logical reasoning’ has remained underexplored. Existing work investigating this reasoning ability of LLMs has focused only on a couple of inference rules (such as modus ponens and modus tollens) of propositional and first-order logic. Addressing the above limitation, we comprehensively evaluate the logical reasoning ability of LLMs on 25 different reasoning patterns spanning over propositional, first-order, and non-monotonic logics. To enable systematic evaluation, we introduce LogicBench, a natural language question-answering dataset focusing on the use of a single inference rule. We conduct detailed analysis with a range of LLMs such as GPT-4, ChatGPT, Gemini, Llama-2, and Mistral using chain-of-thought prompting. Experimental results show that existing LLMs do not fare well on LogicBench; especially, they struggle with instances involving complex reasoning and negations. Furthermore, they sometimes tend to prioritize parametric knowledge over contextual information and overlook the correct reasoning chain. We believe that our work and findings facilitate future research for evaluating and enhancing the logical reasoning ability of LLMs.

2023

pdf bib
End-to-end Knowledge Retrieval with Multi-modal Queries
Man Luo | Zhiyuan Fang | Tejas Gokhale | Yezhou Yang | Chitta Baral
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We investigate knowledge retrieval with multi-modal queries, i.e. queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. We curate a new dataset called ReMuQ for benchmarking progress on this task. ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries. We introduce a retriever model “ReViz” that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators. We introduce a new pretraining task that is effective for learning knowledge retrieval with multimodal queries and also improves performance on downstream tasks. We demonstrate superior performance in retrieval on two datasets (ReMuQ and OK-VQA) under zero-shot settings as well as further improvements when finetuned on these datasets.

pdf bib
A Study on the Efficiency and Generalization of Light Hybrid Retrievers
Man Luo | Shashank Jain | Anchit Gupta | Arash Einolghozati | Barlas Oguz | Debojeet Chatterjee | Xilun Chen | Chitta Baral | Peyman Heidari
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Hybrid retrievers can take advantage of both sparse and dense retrievers. Previous hybrid retrievers leverage indexing-heavy dense retrievers. In this work, we study “Is it possible to reduce the indexing memory of hybrid retrievers without sacrificing performance”? Driven by this question, we leverage an indexing-efficient dense retriever (i.e. DrBoost) and introduce a LITE retriever that further reduces the memory of DrBoost. LITE is jointly trained on contrastive learning and knowledge distillation from DrBoost. Then, we integrate BM25, a sparse retriever, with either LITE or DrBoost to form light hybrid retrievers. Our Hybrid-LITE retriever saves 13× memory while maintaining 98.0% performance of the hybrid retriever of BM25 and DPR. In addition, we study the generalization capacity of our light hybrid retrievers on out-of-domain dataset and a set of adversarial attacks datasets. Experiments showcase that light hybrid retrievers achieve better generalization performance than individual sparse and dense retrievers. Nevertheless, our analysis shows that there is a large room to improve the robustness of retrievers, suggesting a new research direction.

2022

pdf bib
Neural Retriever and Go Beyond: A Thesis Proposal
Man Luo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Information Retriever (IR) aims to find the relevant documents (e.g. snippets, passages, and articles) to a given query at large scale. IR plays an important role in many tasks such as open domain question answering and dialogue systems, where external knowledge is needed. In the past, searching algorithms based on term matching have been widely used. Recently, neural-based algorithms (termed as neural retrievers) have gained more attention which can mitigate the limitations of traditional methods. Regardless of the success achieved by neural retrievers, they still face many challenges, e.g. suffering from a small amount of training data and failing to answer simple entity-centric questions. Furthermore, most of the existing neural retrievers are developed for pure-text query. This prevents them from handling multi-modality queries (i.e. the query is composed of textual description and images). This proposal has two goals. First, we introduce methods to address the abovementioned issues of neural retrievers from three angles, new model architectures, IR-oriented pretraining tasks, and generating large scale training data. Second, we identify the future research direction and propose potential corresponding solution.

pdf bib
A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context
Man Luo | Shuguang Chen | Chitta Baral
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection. The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28% in terms of exact matching of relevant sentences on the HotpotQA dataset.

pdf bib
Generalized but not Robust? Comparing the Effects of Data Modification Methods on Out-of-Domain Generalization and Adversarial Robustness
Tejas Gokhale | Swaroop Mishra | Man Luo | Bhavdeep Sachdeva | Chitta Baral
Findings of the Association for Computational Linguistics: ACL 2022

Data modification, either via additional training datasets, data augmentation, debiasing, and dataset filtering, has been proposed as an effective solution for generalizing to out-of-domain (OOD) inputs, in both natural language processing and computer vision literature. However, the effect of data modification on adversarial robustness remains unclear. In this work, we conduct a comprehensive study of common data modification strategies and evaluate not only their in-domain and OOD performance, but also their adversarial robustness (AR).We also present results on a two-dimensional synthetic dataset to visualize the effect of each method on the training distribution. This work serves as an empirical study towards understanding the relationship between generalizing to unseen domains and defending against adversarial perturbations. Our findings suggest that more data (either via additional datasets or data augmentation) benefits both OOD accuracy and AR.However, data filtering (previously shown to improve OOD accuracy on natural language inference) hurts OOD accuracy on other tasks such as question answering and image classification. We provide insights from our experiments to inform future work in this direction.

pdf bib
In-BoXBART: Get Instructions into Biomedical Multi-Task Learning
Mihir Parmar | Swaroop Mishra | Mirali Purohit | Man Luo | Murad Mohammad | Chitta Baral
Findings of the Association for Computational Linguistics: NAACL 2022

Single-task models have proven pivotal in solving specific tasks; however, they have limitations in real-world applications where multi-tasking is necessary and domain shifts are exhibited. Recently, instructional prompts have shown significant improvement towards multi-task generalization; however, the effect of instructional prompts and Multi-Task Learning (MTL) has not been systematically studied in the biomedical domain. Motivated by this, this paper explores the impact of instructional prompts for biomedical MTL. We introduce the BoX, a collection of 32 instruction tasks for Biomedical NLP across (X) various categories. Using this meta-dataset, we propose a unified model termed as In-BoXBART, that can jointly learn all tasks of the BoX without any task-specific modules. To the best of our knowledge, this is the first attempt to propose a unified model in the biomedical domain and use instructions to achieve generalization across several biomedical tasks. Experimental results indicate that the proposed model: 1) outperforms single-task baseline by ~3% and multi-task (without instruction) baseline by ~18% on an average, and 2) shows ~23% improvement compared to single-task baseline in few-shot learning (i.e., 32 instances per task) on an average. Our analysis indicates that there is significant room for improvement across tasks in the BoX, implying the scope for future research direction.

pdf bib
Choose Your QA Model Wisely: A Systematic Study of Generative and Extractive Readers for Question Answering
Man Luo | Kazuma Hashimoto | Semih Yavuz | Zhiwei Liu | Chitta Baral | Yingbo Zhou
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge

While both extractive and generative readers have been successfully applied to the Question Answering (QA) task, little attention has been paid toward the systematic comparison of them. Characterizing the strengths and weaknesses of the two readers is crucial not only for making a more informed reader selection in practice but also for developing a deeper understanding to foster further research on improving readers in a principled manner. Motivated by this goal, we make the first attempt to systematically study the comparison of extractive and generative readers for question answering. To be aligned with the state-of-the-art, we explore nine transformer-based large pre-trained language models (PrLMs) as backbone architectures. Furthermore, we organize our findings under two main categories: (1) keeping the architecture invariant, and (2) varying the underlying PrLMs. Among several interesting findings, it is important to highlight that (1) the generative readers perform better in long context QA, (2) the extractive readers perform better in short context while also showing better out-of-domain generalization, and (3) the encoder of encoder-decoder PrLMs (e.g., T5) turns out to be a strong extractive reader and outperforms the standard choice of encoder-only PrLMs (e.g., RoBERTa). We also study the effect of multi-task learning on the two types of readers varying the underlying PrLMs and perform qualitative and quantitative diagnosis to provide further insights into future directions in modeling better readers.

2021

pdf bib
‘Just because you are right, doesn’t mean I am wrong’: Overcoming a bottleneck in development and evaluation of Open-Ended VQA tasks
Man Luo | Shailaja Keyur Sampat | Riley Tallman | Yankai Zeng | Manuha Vancha | Akarshan Sajja | Chitta Baral
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

GQA (CITATION) is a dataset for real-world visual reasoning and compositional question answering. We found that many answers predicted by the best vision-language models on the GQA dataset do not match the ground-truth answer but still are semantically meaningful and correct in the given context. In fact, this is the case with most existing visual question answering (VQA) datasets where they assume only one ground-truth answer for each question. We propose Alternative Answer Sets (AAS) of ground-truth answers to address this limitation, which is created automatically using off-the-shelf NLP tools. We introduce a semantic metric based on AAS and modify top VQA solvers to support multiple plausible answers for a question. We implement this approach on the GQA dataset and show the performance improvements.

pdf bib
Weakly-Supervised Visual-Retriever-Reader for Knowledge-based Question Answering
Man Luo | Yankai Zeng | Pratyay Banerjee | Chitta Baral
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge-based visual question answering (VQA) requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowledge corpus for retrieval. Existing work leverage different knowledge bases (e.g., ConceptNet and Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is hard to fairly compare models’ performance. To address this issue, we collect a natural language knowledge base that can be used for any VQA system. Moreover, we propose a Visual Retriever-Reader pipeline to approach knowledge-based VQA. The visual retriever aims to retrieve relevant knowledge, and the visual reader seeks to predict answers based on given knowledge. We introduce various ways to retrieve knowledge using text and images and two reader styles: classification and extraction. Both the retriever and reader are trained with weak supervision. Our experimental results show that a good retriever can significantly improve the reader’s performance on the OK-VQA challenge. The code and corpus are provided in https://github.com/luomancs/retriever_reader_for_okvqa.git.