Mani Srivastava
2024
Penetrative AI: Making LLMs Comprehend the Physical World
Huatao Xu
|
Liying Han
|
Qirui Yang
|
Mo Li
|
Mani Srivastava
Findings of the Association for Computational Linguistics: ACL 2024
Recent developments in Large Language Models (LLMs) have demonstrated their remarkable capabilities across a range of tasks. Questions, however, persist about the nature of LLMs and their potential to integrate common-sense human knowledge when performing tasks involving information about the real physical world. This paper delves into these questions by exploring how LLMs can be extended to interact with and reason about the physical world through IoT sensors and actuators, a concept that we term “Penetrative AI”. The paper explores such an extension at two levels of LLMs’ ability to penetrate into the physical world via the processing of sensory signals. Our preliminary findings indicate that LLMs, with ChatGPT being the representative example in our exploration, have considerable and unique proficiency in employing the embedded world knowledge for interpreting IoT sensor data and reasoning over them about tasks in the physical realm. Not only this opens up new applications for LLMs beyond traditional text-based tasks, but also enables new ways of incorporating human knowledge in cyber-physical systems.
2018
Generating Natural Language Adversarial Examples
Moustafa Alzantot
|
Yash Sharma
|
Ahmed Elgohary
|
Bo-Jhang Ho
|
Mani Srivastava
|
Kai-Wei Chang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations to correctly classified examples which can cause the model to misclassify. In the image domain, these perturbations can often be made virtually indistinguishable to human perception, causing humans and state-of-the-art models to disagree. However, in the natural language domain, small perturbations are clearly perceptible, and the replacement of a single word can drastically alter the semantics of the document. Given these challenges, we use a black-box population-based optimization algorithm to generate semantically and syntactically similar adversarial examples that fool well-trained sentiment analysis and textual entailment models with success rates of 97% and 70%, respectively. We additionally demonstrate that 92.3% of the successful sentiment analysis adversarial examples are classified to their original label by 20 human annotators, and that the examples are perceptibly quite similar. Finally, we discuss an attempt to use adversarial training as a defense, but fail to yield improvement, demonstrating the strength and diversity of our adversarial examples. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.
Search
Fix data
Co-authors
- Moustafa Alzantot 1
- Kai-Wei Chang 1
- Ahmed Elgohary 1
- Liying Han 1
- Bo-Jhang Ho 1
- show all...