Manzil Zaheer


2024

pdf bib
Analysis of Plan-based Retrieval for Grounded Text Generation
Ameya Godbole | Nicholas Monath | Seungyeon Kim | Ankit Singh Rawat | Andrew McCallum | Manzil Zaheer
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In text generation, hallucinations refer to the generation of seemingly coherent text that contradicts established knowledge. One compelling hypothesis is that hallucinations occur when a language model is given a generation task outside its parametric knowledge (due to rarity, recency, domain, etc.). A common strategy to address this limitation is to infuse the language models with retrieval mechanisms, providing the model with relevant knowledge for the task. In this paper, we leverage the planning capabilities of instruction-tuned LLMs and analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations. We empirically evaluate several variations of our proposed approach on long-form text generation tasks. By improving the coverage of relevant facts, plan-guided retrieval and generation can produce more informative responses while providing a higher rate of attribution to source documents.

pdf bib
Can Public Large Language Models Help Private Cross-device Federated Learning?
Boxin Wang | Yibo Zhang | Yuan Cao | Bo Li | Hugh McMahan | Sewoong Oh | Zheng Xu | Manzil Zaheer
Findings of the Association for Computational Linguistics: NAACL 2024

We study (differentially) private federated learning (FL) of language models. The language models in cross-device FL are relatively small, which can be trained with meaningful formal user-level differential privacy (DP) guarantees when massive parallelism in training is enabled by the participation of a moderate size of users. Recently, public data has been used to improve privacy-utility trade-offs for both large and small language models. In this work, we provide a systematic study of using large-scale public data and LLMs to help differentially private training of on-device FL models, and further improve the privacy-utility tradeoff by techniques of distillation. Moreover, we propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution, which significantly improves the sample efficiency of (pre-)training on public data. The proposed method is efficient and effective for training private models by taking advantage of public data, especially for customized on-device architectures that do not have ready-touse pre-trained models.

2023

pdf bib
Longtonotes: OntoNotes with Longer Coreference Chains
Kumar Shridhar | Nicholas Monath | Raghuveer Thirukovalluru | Alessandro Stolfo | Manzil Zaheer | Andrew McCallum | Mrinmaya Sachan
Findings of the Association for Computational Linguistics: EACL 2023

Ontonotes has served as the most important benchmark for coreference resolution. However, for ease of annotation, several long documents in Ontonotes were split into smaller parts. In this work, we build a corpus of coreference-annotated documents of significantly longer length than what is currently available. We do so by providing an accurate, manually-curated, merging of annotations from documents that were split into multiple parts in the original Ontonotes annotation process. The resulting corpus, which we call LongtoNotes contains documents in multiple genres of the English language with varying lengths, the longest of which are up to 8x the length of documents in Ontonotes, and 2x those in Litbank.We evaluate state-of-the-art neural coreference systems on this new corpus, analyze the relationships between model architectures/hyperparameters and document length on performance and efficiency of the models, and demonstrate areas of improvement in long-document coreference modelling revealed by our new corpus.

pdf bib
Large Language Models with Controllable Working Memory
Daliang Li | Ankit Singh Rawat | Manzil Zaheer | Xin Wang | Michal Lukasik | Andreas Veit | Felix Yu | Sanjiv Kumar
Findings of the Association for Computational Linguistics: ACL 2023

Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), partly owing to the massive amounts of world knowledge they memorize during pretraining. While many downstream applications provide the model with an informational context to aid its underlying task, how the model’s world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model’s memorized knowledge. This enables model predictions to be grounded in the context, which then facilitates updating specific model predictions without frequently retraining the model. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM models (both pretrained and finetuned) could exhibit low controllability and robustness that does not improve with increasing the model size. As a solution, we propose a simple yet effective method – knowledge aware finetuning (KAFT) – to strengthen both controllability and robustness by injecting counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.

pdf bib
Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR Decomposition
Nishant Yadav | Nicholas Monath | Manzil Zaheer | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2023

Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR’s one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error—by up to 70% on the important k = 1 setting—while using no more compute than its competitors.

pdf bib
Machine Reading Comprehension using Case-based Reasoning
Dung Thai | Dhruv Agarwal | Mudit Chaudhary | Wenlong Zhao | Rajarshi Das | Jay-Yoon Lee | Hannaneh Hajishirzi | Manzil Zaheer | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2023

We present an accurate and interpretable method for answer extraction in machine reading comprehension that is reminiscent of case-based reasoning (CBR) from classical AI. Our method (CBR-MRC) builds upon the hypothesis that contextualized answers to similar questions share semantic similarities with each other. Given a test question, CBR-MRC first retrieves a set of similar cases from a nonparametric memory and then predicts an answer by selecting the span in the test context that is most similar to the contextualized representations of answers in the retrieved cases. The semi-parametric nature of our approach allows it to attribute a prediction to the specific set of evidence cases, making it a desirable choice for building reliable and debuggable QA systems. We show that CBR-MRC provides high accuracy comparable with large reader models and outperforms baselines by 11.5 and 8.4 EM on NaturalQuestions and NewsQA, respectively. Further, we demonstrate the ability of CBR-MRC in identifying not just the correct answer tokens but also the span with the most relevant supporting evidence. Lastly, we observe that contexts for certain question types show higher lexical diversity than others and find that CBR-MRC is robust to these variations while performance using fully-parametric methods drops.

pdf bib
Questions Are All You Need to Train a Dense Passage Retriever
Devendra Singh Sachan | Mike Lewis | Dani Yogatama | Luke Zettlemoyer | Joelle Pineau | Manzil Zaheer
Transactions of the Association for Computational Linguistics, Volume 11

We introduce ART, a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. ART, in contrast, only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages). It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence passages, and (2) the passages are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both passage and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that ART obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses.1 Our code and model checkpoints are available at: https://github.com/DevSinghSachan/art.

2022

pdf bib
Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
Nishant Yadav | Nicholas Monath | Rico Angell | Manzil Zaheer | Andrew McCallum
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or L2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders’ high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.

pdf bib
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge
Rajarshi Das | Patrick Lewis | Sewon Min | June Thai | Manzil Zaheer
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge

2021

pdf bib
Case-based Reasoning for Natural Language Queries over Knowledge Bases
Rajarshi Das | Manzil Zaheer | Dung Thai | Ameya Godbole | Ethan Perez | Jay Yoon Lee | Lizhen Tan | Lazaros Polymenakos | Andrew McCallum
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

It is often challenging to solve a complex problem from scratch, but much easier if we can access other similar problems with their solutions — a paradigm known as case-based reasoning (CBR). We propose a neuro-symbolic CBR approach (CBR-KBQA) for question answering over large knowledge bases. CBR-KBQA consists of a nonparametric memory that stores cases (question and logical forms) and a parametric model that can generate a logical form for a new question by retrieving cases that are relevant to it. On several KBQA datasets that contain complex questions, CBR-KBQA achieves competitive performance. For example, on the CWQ dataset, CBR-KBQA outperforms the current state of the art by 11% on accuracy. Furthermore, we show that CBR-KBQA is capable of using new cases without any further training: by incorporating a few human-labeled examples in the case memory, CBR-KBQA is able to successfully generate logical forms containing unseen KB entities as well as relations.

pdf bib
Scaling Within Document Coreference to Long Texts
Raghuveer Thirukovalluru | Nicholas Monath | Kumar Shridhar | Manzil Zaheer | Mrinmaya Sachan | Andrew McCallum
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Differentiable Open-Ended Commonsense Reasoning
Bill Yuchen Lin | Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Xiang Ren | William Cohen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provide a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) — the task of answering a commonsense question without any pre-defined choices — using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.

2020

pdf bib
Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion
Rajarshi Das | Ameya Godbole | Nicholas Monath | Manzil Zaheer | Andrew McCallum
Findings of the Association for Computational Linguistics: EMNLP 2020

A case-based reasoning (CBR) system solves a new problem by retrieving ‘cases’ that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB. Our probabilistic model estimates the likelihood that a path is effective at answering a query about the given entity. The parameters of our model can be efficiently computed using simple path statistics and require no iterative optimization. Our model is non-parametric, growing dynamically as new entities and relations are added to the KB. On several benchmark datasets our approach significantly outperforms other rule learning approaches and performs comparably to state-of-the-art embedding-based approaches. Furthermore, we demonstrate the effectiveness of our model in an “open-world” setting where new entities arrive in an online fashion, significantly outperforming state-of-the-art approaches and nearly matching the best offline method.

2019

pdf bib
Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference
Rajarshi Das | Ameya Godbole | Manzil Zaheer | Shehzaad Dhuliawala | Andrew McCallum
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

This paper describes our submission to the shared task on “Multi-hop Inference Explanation Regeneration” in TextGraphs workshop at EMNLP 2019 (Jansen and Ustalov, 2019). Our system identifies chains of facts relevant to explain an answer to an elementary science examination question. To counter the problem of ‘spurious chains’ leading to ‘semantic drifts’, we train a ranker that uses contextualized representation of facts to score its relevance for explaining an answer to a question. Our system was ranked first w.r.t the mean average precision (MAP) metric outperforming the second best system by 14.95 points.

pdf bib
Multi-step Entity-centric Information Retrieval for Multi-Hop Question Answering
Rajarshi Das | Ameya Godbole | Dilip Kavarthapu | Zhiyu Gong | Abhishek Singhal | Mo Yu | Xiaoxiao Guo | Tian Gao | Hamed Zamani | Manzil Zaheer | Andrew McCallum
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Multi-hop question answering (QA) requires an information retrieval (IR) system that can find multiple supporting evidence needed to answer the question, making the retrieval process very challenging. This paper introduces an IR technique that uses information of entities present in the initially retrieved evidence to learn to ‘hop’ to other relevant evidence. In a setting, with more than 5 million Wikipedia paragraphs, our approach leads to significant boost in retrieval performance. The retrieved evidence also increased the performance of an existing QA model (without any training) on the benchmark by 10.59 F1.

2018

pdf bib
Investigating the Working of Text Classifiers
Devendra Sachan | Manzil Zaheer | Ruslan Salakhutdinov
Proceedings of the 27th International Conference on Computational Linguistics

Text classification is one of the most widely studied tasks in natural language processing. Motivated by the principle of compositionality, large multilayer neural network models have been employed for this task in an attempt to effectively utilize the constituent expressions. Almost all of the reported work train large networks using discriminative approaches, which come with a caveat of no proper capacity control, as they tend to latch on to any signal that may not generalize. Using various recent state-of-the-art approaches for text classification, we explore whether these models actually learn to compose the meaning of the sentences or still just focus on some keywords or lexicons for classifying the document. To test our hypothesis, we carefully construct datasets where the training and test splits have no direct overlap of such lexicons, but overall language structure would be similar. We study various text classifiers and observe that there is a big performance drop on these datasets. Finally, we show that even simple models with our proposed regularization techniques, which disincentivize focusing on key lexicons, can substantially improve classification accuracy.

pdf bib
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Kathryn Mazaitis | Ruslan Salakhutdinov | William Cohen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Open Domain Question Answering (QA) is evolving from complex pipelined systems to end-to-end deep neural networks. Specialized neural models have been developed for extracting answers from either text alone or Knowledge Bases (KBs) alone. In this paper we look at a more practical setting, namely QA over the combination of a KB and entity-linked text, which is appropriate when an incomplete KB is available with a large text corpus. Building on recent advances in graph representation learning we propose a novel model, GRAFT-Net, for extracting answers from a question-specific subgraph containing text and KB entities and relations. We construct a suite of benchmark tasks for this problem, varying the difficulty of questions, the amount of training data, and KB completeness. We show that GRAFT-Net is competitive with the state-of-the-art when tested using either KBs or text alone, and vastly outperforms existing methods in the combined setting.

2017

pdf bib
Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks
Rajarshi Das | Manzil Zaheer | Siva Reddy | Andrew McCallum
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. Universal schema can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing Memory networks to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on Spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1 points.

2015

pdf bib
Gaussian LDA for Topic Models with Word Embeddings
Rajarshi Das | Manzil Zaheer | Chris Dyer
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)