Maor Ivgi


2023

pdf bib
Efficient Long-Text Understanding with Short-Text Models
Maor Ivgi | Uri Shaham | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 11

Transformer-based pretrained language models (LMs) are ubiquitous across natural language understanding, but cannot be applied to long sequences such as stories, scientific articles, and long documents due to their quadratic complexity. While a myriad of efficient transformer variants have been proposed, they are typically based on custom implementations that require expensive pretraining from scratch. In this work, we propose SLED: SLiding-Encoder and Decoder, a simple approach for processing long sequences that re-uses and leverages battle-tested short-text pretrained LMs. Specifically, we partition the input into overlapping chunks, encode each with a short-text LM encoder and use the pretrained decoder to fuse information across chunks (fusion-in-decoder). We illustrate through controlled experiments that SLED offers a viable strategy for long text understanding and evaluate our approach on SCROLLS, a benchmark with seven datasets across a wide range of language understanding tasks. We find that SLED is competitive with specialized models that are up to 50x larger and require a dedicated and expensive pretraining step.

pdf bib
ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding
Uri Shaham | Maor Ivgi | Avia Efrat | Jonathan Berant | Omer Levy
Findings of the Association for Computational Linguistics: EMNLP 2023

We introduce ZeroSCROLLS, a zero-shot benchmark for natural language understanding over long texts, which contains only test and small validation sets, without training data. We adapt six tasks from the SCROLLS benchmark, and add four new datasets, including two novel information fusing tasks, such as aggregating the percentage of positive reviews. Using ZeroSCROLLS, we conduct a comprehensive evaluation of both open-source and closed large language models, finding that Claude outperforms ChatGPT, and that GPT-4 achieves the highest average score. However, there is still room for improvement on multiple open challenges in ZeroSCROLLS, such as aggregation tasks, where models struggle to pass the naive baseline. As the state of the art is a moving target, we invite researchers to evaluate their ideas on the live ZeroSCROLLS leaderboard.

2022

pdf bib
SCROLLS: Standardized CompaRison Over Long Language Sequences
Uri Shaham | Elad Segal | Maor Ivgi | Avia Efrat | Ori Yoran | Adi Haviv | Ankit Gupta | Wenhan Xiong | Mor Geva | Jonathan Berant | Omer Levy
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods.

pdf bib
Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments
Maor Ivgi | Yair Carmon | Jonathan Berant
Findings of the Association for Computational Linguistics: EMNLP 2022

Neural scaling laws define a predictable relationship between a model’s parameter count and its performance after training in the form of a power law. However, most research to date has not explicitly investigated whether scaling laws can be used to accelerate model development. In this work, we perform such an empirical investigation across a wide range of language understanding tasks, starting from models with as few as 10K parameters, and evaluate downstream performance across 9 language understanding tasks. We find that scaling laws emerge at finetuning time in some NLP tasks, and that they can also be exploited for debugging convergence when training large models. Moreover, for tasks where scaling laws exist, they can be used to predict the performance of larger models, which enables effective model selection. However, revealing scaling lawsrequires careful hyperparameter tuning and multiple runs for the purpose of uncertainty estimation, which incurs additional overhead, partially offsetting the computational benefits.

2021

pdf bib
Achieving Model Robustness through Discrete Adversarial Training
Maor Ivgi | Jonathan Berant
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Discrete adversarial attacks are symbolic perturbations to a language input that preserve the output label but lead to a prediction error. While such attacks have been extensively explored for the purpose of evaluating model robustness, their utility for improving robustness has been limited to offline augmentation only. Concretely, given a trained model, attacks are used to generate perturbed (adversarial) examples, and the model is re-trained exactly once. In this work, we address this gap and leverage discrete attacks for online augmentation, where adversarial examples are generated at every training step, adapting to the changing nature of the model. We propose (i) a new discrete attack, based on best-first search, and (ii) random sampling attacks that unlike prior work are not based on expensive search-based procedures. Surprisingly, we find that random sampling leads to impressive gains in robustness, outperforming the commonly-used offline augmentation, while leading to a speedup at training time of ~10x. Furthermore, online augmentation with search-based attacks justifies the higher training cost, significantly improving robustness on three datasets. Last, we show that our new attack substantially improves robustness compared to prior methods.